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Summary

A study has been performed focusing on the calculation of sensitivities of displacements,
velocities, accelerations, and stresses in linear, structural, transient response problems. One
significant goal of the study was to develop and evaluate sensitivity calculation techniques
suitable for large-order finite element analyses. Accordingly, approximation vectors such as
vibration mode shapes are used to reduce the dimensionality of the finite element model. Much
of the research focused on the convergence of both response quantities and sensitivities as a
function of the number of vectors used.

Two types of sensitivity calculation techniques were developed and evaluated. The first type
of technique is an overall finite difference method where the analysis is repeated for perturbed
designs. The second type of technique is termed semianalytical because it involves direct
analytical differentiation of the equations of motion with finite difference approximation of the
coefficient matrices. To be computationally practical in large-order problems, the overall finite
difference methods must use the approximation vectors from the original design in the analyses
of the perturbed models. This was found to result in poor convergence of stress sensitivities
in several cases. To overcome this poor convergence, two semianalytical techniques were
developed. The first technique accounts for the change in eigenvectors through approximate
eigenvector derivatives. The second technique applies the mode acceleration method of transient
analysis to the sensitivity calculations. Both result in very good convergence of the stress
sensitivities. In both techniques the computational cost is much less than would result if the
vibration modes were recalculated and then used in an overall finite difference method.






Chapter 1

Introduction

1.1. Overview

In the past 10 years there has been increasing in-
terest in calculating the derivatives of structural be-
havior with respect to problem parameters or design
variables (i.e., sensitivities). One of the main uses of
these sensitivities is in automated design procedures
where a numerical algorithm is used to improve a
structure by modifying the design parameters while
satisfying prescribed constraints on the structural be-
havior. Most of the numerical algorithms used in
these procedures require both an initial design and
a set of sensitivities in order to decide how to im-
prove the structure. Many references address this
sensitivity calculation question within the context of
automated structural design, whereas others, such as
this study, focus specifically on issues related to the
calculation of sensitivities. Other uses of sensitivities
in structures problems include the system identifica-
tion problem in structural dynamics and statistical
structural analysis. References 1 and 2 provide a
comprehensive review of work on calculating sensi-
tivities in structural systems.

It is clear from many references (e.g., ref. 1)
that most of the emphasis in structural optimiza-
tion and the associated sensitivity calculation meth-
ods has been on static problems. This is not sur-
prising since most structural analyses themselves are
static. The objective of the static analysis and sen-
sitivity calculation problem, for linear systems, is to
calculate the responses (e.g., displacements, stresses)
and their derivatives with respect to structural pa-
rameters (e.g., member areas, thicknesses), which
are assumed to be constant for all time. Tech-
niques for both the analysis and sensitivity calcula-
tions have reached considerable maturity in the past
10 to 20 years.

In many problems, however, the loading on the
structure varies with time, which causes the response
of the structure also to vary as a function of time.
Examples of such problems are a gust on an aircraft
wing, an unbalanced engine in an automobile, or a
building during an earthquake. In these cases, it is
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important to predict stresses accurately as well as
displacements (and possibly velocities and accelera-
tions) as a function of time. Often it is sufficient to
predict the maximum and minimum values of these
response quantities. Similarly, the goal of the sen-
sitivity analysis is the calculation of derivatives of
these response quantities with respect to the struc-
tural parameters as a function of time or at the time
points where the maximum or minimum responses
occur.

The introduction of the time parameter compli-
cates the analysis in several ways. First, it changes
the system of equations from a set of coupled alge-
braic equations to a set of coupled differential equa-
tions whose accurate solution may be difficult and
computationally costly. Second, the amount of in-
formation that must be considered and evaluated to
understand the response of the structure is increased
by orders of magnitude.

Most practical static and dynamic analyses are
currently performed with the finite element method.
Since this technique replaces a continuum (infinite di-
mensional space) with a finite-degree-of-freedom ap-
proximation, the question of required mesh refine-
ment is a natural one. This is not an easy question to
answer because the convergence of the approximation
as the mesh is refined depends on the quantity being
considered. Usually, the fundamental unknowns are
the displacements and rotations at the finite element
nodes. In theses cases, the convergence of derivatives
of displacements with respect to a spatial parameter
(stresses), with respect to time (velocities, acceler-
ations), or with respect to a structural parameter
(semsitivities) will be worse than the convergence of
the displacements themselves.

After the structure has been discretized with the
finite element method, yet another approximation
is usually introduced in linear dynamics problems.
The behavior of the structure is represented by a
reduced set of basis functions (frequently natural
vibration modes) in order to simplify the solution of
the transient response problem. This approximation
introduces another set of concerns over accuracy of
the response quantities and their sensitivities.

Other errors in transient analysis or sensitivity
calculations, which rarely occur in static analyses,
are due to the truncation error of finite difference
operators. This problem occurs with the use of nu-
merical integration techniques in solving the coupled
differential equations in the transient problem. This
problem also occurs when difference approximations
are used in the calculation of sensitivities. Round-oft
errors, due to the finite precision arithmetic on digi-
tal computers, are also more of a concern in transient
or sensitivity analyses than in simple static analyses.

3
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All these complexities in transient analysis cou-
pled with the problems of sensitivity analysis have
slowed the progress in the development of sensi-
tivity calculation techniques for transient response
problems. However, substantial progress has been
made. Some of the important previous work in
optimization of structures under transient loads and
calculation of sensitivities in transient response prob-
lems is discussed in section 1.2.

1.2. Review of Previous Pertinent Work

Reference 3 is one of the earliest papers dealing
with optimization of structures under transient loads.
In this paper, Fox and Kapoor consider the minimum
mass design of frame structures under an applied
base motion subject to constraints on deflections and
stresses. The equations of motion are uncoupled by
using vibration modes and solved for the maximum
value of the modal response by using a shock spec-
trum approach. A considerable simplification is in-
troduced by directly summing the maximum modal
responses; therefore, time is removed as a parameter
in the calculations.

In references 4 and 5, Cassis and Schmit present
procedures for the automated design of plane frames
under general transient loading. The dynamic analy-
sis is performed with modal superposition, and only
modal damping is allowed. Integral forms of the
time-dependent constraints are used. Sensitivities
are calculated with an explicit differentiation of the
dynamic equations along with exact calculation of
the required eigenvalue and eigenvector derivatives.
Effects of finite element discretization and modal
truncation on the sensitivities or final optimized de-
signs were not considered.

In the past 10 years, other researchers have con-
sidered the application of general sensitivity theory
to the problem of dynamic mechanical systems. Ref-
erence 1 summarizes this work and describes three
basic approaches which have been employed. In the
first method, called the direct method, the equations
of motion are directly differentiated and solved. A
second method offers the advantage of reduced com-
putational cost when there are more design vari-
ables than constraints on response quantities. In
this method, called the adjoint method, the sensi-
tivity equations are rewritten in terms of a newly
defined adjoint vector. After solving this new sys-
tem for the adjoint vector, the calculation of the sen-
sitivities of the response constraints with respect to
each of the design variables is straightforward. In the
third method, called the Green’s function method,
the derivatives are obtained in terms of the Green’s
function of the equations of motion. Although the

4

results from all three methods are theoretically iden-
tical, their relative computational efficiency depends
on the relative numbers of design variables, degrees
of freedom, and constraints.

Haug, Arora, and their coworkers have made con-
siderable progress in addressing many of the prob-
lems in the optimal design of mechanical systems un-
der dynamic loadings. Much of their early work was
spent studying a “state space” or adjoint variable
approach to calculating sensitivities. References 6
through 9 should be noted. These references con-
sider application to both elastic structural design and
machine design problems that often have the addi-
tional complexity of nonlinear equations of motion.
However, most of these examples have involved few
degrees of freedom or design variables. A more re-
cent paper by Haug (ref. 10) extended the sensitivity
analyses of previous papers to include additional al-
gebraic constraint equations that are often present in
machine design problems. Also, sensitivity equations
for second derivatives are presented.

The adjoint method is particularly attractive
when a transient constraint is integrated over time
to produce a single constraint because the total num-
ber of constraints is often small. However, the loss
of information in this integral formulation and its
disadvantages are noted in reference 11. Given the
danger of having only a single “worst-case” value of
the constraint function in time, reference 11 proposed
including all local maximum points of the constraint
function in the constraint set. A significant disadvan-
tage of this approach is that for “jagged” response
functions, there can be a large number of redundant
local maxima. This important problem of constraint
definition was also considered in reference 8, where
several methods for obtaining a few important con-
straints at discrete points in time were proposed.

Both direct and adjoint sensitivity methods for
a nonlinear hysteretic structure are presented in ref-
erence 12. Because of the nonlinearities, numerical
integration of the full coupled system is required.

A recent approach in sensitivity analysis has been
to write sensitivity expressions for the solid contin-
uum prior to discretizing the system. This approach
is especially attractive when shape-type design vari-
ables are being considered because the design vari-
able itself often represents a continuous region on
the surface of the body. Reference 13 uses the con-
cept of the material derivative to calculate shape
derivatives of a continuum under dynamic loads. In
reference 14, expressions for shape sensitivities of
a continuum considering material nonlinearities and
dynamic effects are written with a variational
approach.



1.3. Objectives and Scope

The purpose of the study reported herein is to in-
vestigate methods for calculating sensitivities in lin-
ear transient structural response problems. Very gen-
eral forms of external loading on the structure and
damping are permitted. In any numerical algorithm,
both accuracy and computational efficiency are con-
cerns. Errors in the sensitivities due to factors such
as the finite element mesh, truncation of the basis
vector set in the transient analysis, and finite differ-
ence approximations in the sensitivity and numerical
integration procedures are considered. An objective
of the study is to identify approaches to sensitivity
analysis that are appropriate for large-scale struc-
tural analysis. This is emphasized in the selection of
the algorithms and in a study of the relative compu-
tational efficiency of several competing methods.

Three transient response problems are considered
in detail: a five-span, simply supported beam; a com-
posite aircraft wing; and a cantilever beam with a
cross section that varies along its length. None of
these three problems are large. However, each prob-
lem includes ingredients which make the sensitivity
analysis computationally difficult.






Chapter 2

Equations of Motion and Solution

2.1. Governing Equations

The equations of motion for a damped, linear
structural system can be written as

Mii + Cii + Ku = p(t) (2.1)

which is a set of ny coupled differential equations
and M, C, and K are the system mass, damping,
and stiffness matrices, respectively. Frequently it
is possible to separate the loading vector p into a
product of a vector describing the spatial distribution
of the loading f and a scalar function of time g(t) as

p(t) = g(O)f (2.2)

Often equations (2.1) are the result of a large
finite element model and are therefore of large order.
One way to characterize the behavior of this system
is by examining the eigenvalues of the undamped
system

Ko; —wiM¢; =0, G=1,....n5) (23)
For most large structural systems, equations (2.1) are
“stiff”; the condition number w%q /wi is many orders
of magnitude. '

The external loading also has a major effect on
the dynamic response of the system. Impulsive loads
where g(t) changes rapidly relative to the periods as-
sociated with the smallest w; tend to produce a re-
sponse history with significant high-frequency com-
ponents. Loads that are applied slowly relative to the
vibration periods of the w; produce a predominantly
low-frequency response history.

Two basic approaches are available for the solu-
tion of equations (2.1). The first approach is to nu-
merically integrate the equations in a step-by-step
manner. In implicit integration techniques, the time
step must be a fraction of the period associated with
the largest w; significantly excited by the loading in
order to obtain an accurate solution. The well-known
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Newmark method (for example, ref. 15) is an example
of such an integration technique. In explicit integra-
tion techniques, the time step must be a fraction of
the period associated with wn, in order for the solu-
tion process to be numerically stable. Using cither
technique, the computational work is large because
equations (2.1) are of large order.

An alternative to directly solving equations (2.1)
is to solve an approximate reduced-order problem
instead. This is the preferred approach for most
linear structural dynamics problems. The details
of the techniques used to reduce the order of the
dynamic system are discussed in section 2.2.

2.2. Reduction Techniques
The first step in applying a reduction technique

to the solution of equations (2.1) is to approximate
the solution by n, basis functions

u = ®q (2.4)
where n, is usually much less than ng. Then a
reduced set of equations can be written
Mg+ Cq+ Kq = g(t)f (2.5)
where
M=o"M® (2.6)
C=9'Cco (2.7)
K=&"K® (2.8)
f=alr (2.9)

If the number of vectors in @ is equal to the size of the
original system ng and the vectors in @ are lincarly
independent, the transformation of equation (2.4) is
exact. Usually, though, n, << n4 and the solution
to the full system (egs. (2.1)) is only approximated
by the solution to the reduced system (egs. (2.5)).
The quality of this approximation as the number
of vectors in @ is increased is a key concern in
evaluating the effectiveness of a particular reduction
technique.

In all reduction methods considered herein, the
first 7, vectors of the set are taken as the reduced
basis. Alternate approaches are available for assess-
ing the importance of a given vector prior to solution
of the reduced system and then discarding the vector
if its contribution is insignificant. These approaches
are not considered here because the cost of generat-
ing the set of vectors @ is often high and the cost of
solving equations (2.5) is often fairly low.
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2.2.1. Mode Displacement Method

The most widely used reduction technique is
the traditional mode displacement method. In this
method, equations (2.3) are solved for the set of vi-
bration modes with lowest n, frequencies and modes.
This set of vibration modes is used as the set of basis
functions ®. When the system is undamped (C = 0
in egs. (2.1)) or C can be expressed as a linear combi-
nation of M and K, equations (2.5) represent a set of
uncoupled differential equations which can be solved
independently. If the eigenvectors are scaled so that
(biTMqSi = 1, the uncoupled equations can be written
as

(i=1,...,np)

(2.10)
where §; is the modal damping ratio. For certain
forms of external loading, such as g(t) represented as
a piecewise linear function of time, an exact explicit
solution is available. This approach is described in
reference 16 and is used in the NASTRAN® computer
program (ref. 17).

Equations (2.1) are the result of a given finite el-
ement approximation designed to model the behav-
ior of the dynamic system. The goal of the reduc-
tion methods discussed in this section is to achieve
an accurate approximation to the solution of equa-
tions (2.1) with a small number of basis vectors. As
discussed, the vibration modes are the most com-
monly used basis functions in linear structural dy-
namics. There are two cases, however, where a large
number of modes are required for an accurate solu-
tion of equations (2.1), and therefore the performance
of the mode displacement method is poor. In the first
case, if the structure is loaded in an impulsive man-
ner, many high-frequency modes tend to be excited.
These high-frequency modes must be included in the
analysis since their contribution to the total response
is significant. In the second case, if the response of
the structure contains a large static component, the
linear combination of vibration modes can do a poor
job of approximating the static deflection shape. The
reduction methods discussed in sections 2.2.2, 2.2.3,
and 2.2.4 alleviate this second accuracy problem with
the mode displacement method.

G+ 2w + wig = g(t)fi

2.2.2. Mode Acceleration Method

To alleviate the poor accuracy of the mode dis-
placement method due to its poor representation
of the static component in the response, a method
was proposed by Williams and Jones (ref. 18) called
the mode acceleration method, which is described
in its modern computational forms in references 16
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and 19. The mode acceleration method can be de-
rived by rewriting equations (2.1) as
ut) =gK 'f-KlCa—K'Mii (2.11)
The first term in equations (2.11) is the quasi-static
solution with load amplitude determined by g(t).
This term is calculated by solving the equations
Ku,=f (2.12)
This solution is carried out in the standard way by
first factoring K into a product of upper and lower
triangular matrices and then performing a forward
and backward substitution operation to obtain us.
The other two terms are calculated with the solution
for @ and ii from the mode displacement solution.
In these terms K~! is calculated as follows. Equa-
tions (2.3) can be rewritten in matrix form as

K®Q 2 = Mo (2.13)

where here ® is the full set of ng eigenvectors and

Q2 s

1

“f
_12

Q2= “2 (2.14)

1
o2

ny

With the eigenvectors scaled so that

Mo =1 (2.15)
equation (2.13) can be written as
P'KeO 2 =1 (2.16)

Premultiplying by (<I>T)_1 and postmultiplying by
&7 yields

K®Q 207 =1 (2.17)
or

K!=#02p7 (2.18)

When & contains less than the full n, eigenvectors,
this expression for K~! is only approximate. How-
ever, since 1 is obtained from the mode displacement
solution based on n, modes (24), K~!Mii is exactly
equal to ®272§, and no approximation results from
introducing equations (2.18). For the damping term,
introducing equations (2.18) with n, vectors in ® is



not exact. However, this is a convenient approxima-
tion especially when modal damping is used. Consis-
tent with these considerations, equations (2.11) can
be rewritten as

u(t) = (K 'f — 30 2Cq - ®Q %4 (2.19)
The key to the effectiveness of this method is that
the static solution is included explicitly in the solu-
tion. It is also simple to apply, since it essentially
just superimposes the static and mode displacement
solutions. Since ¢ and § are obtained from the mode
displacement solution, i and 1 are identical to the
values obtained in the mode displacement method.

2.9.9. Static Mode Method

An alternative approach to the mode acceleration
method that accounts for the static solution slightly
differently is termed the static mode method herein.
In this method, the static solution is included as
an additional “mode” in forming the reduced equa-
tions (2.5). The procedure begins by calculating a set
of ny — 1 eigenvectors ® with equations (2.3). Then
the static solution is calculated as

K&, =f (2.20)
To improve the orthogonality of the basis vectors,
the components of the vibration modes are removed
from the static solution by use of the Gram-Schmidt
process

& = ¢ — ®c (2.21)

where

c=®TMg, (2.22)

The vector ¢, is then concatenated with & to yield a
new @ which is the complete basis. Equations (2.5)
now become coupled and can be solved directly or
reduced to an uncoupled form with the following
procedure. First the reduced eigenvalue problem
MZA+KZ=0 (2.23)
is solved for the n, x n, diagonal matrix of eigen-
values A and the n, x n, matrix of eigenvectors Z.
Now a new set of basis vectors can be written as
o = BZ (2.24)
When & is substituted for @ in equations (2.6), (2.7),
(2.8), and (2.9), an uncoupled system results when C
is of the special form described in section 2.2.1.

The static mode method is similar to the mode
acceleration method in that the static displacement

vector is explicitly included in the solution. However,
in the mode acceleration method the amplitude of the
static displacement vector is not an unknown but
is determined by g(t), whereas in the static mode
method the amplitude varies to possibly improve
the solution. Also, this static displacement vector
participates in the calculation of 11 and ii to possibly
improve them as well.

2.2.4. Ritz-Wilson-Lanczos Method

A fourth method, which has become popular in
the past few years is termed the Ritz-Wilson-Lanczos
(RWL) method and is described in references 20, 21,
and 22. Instead of using eigenvectors of the structure,
this method uses a set of Lanczos vectors to form the
reduced equations. The algorithm used here follows
that in reference 20. The first vector is obtained by
solving the static equations (2.20) and then scaling
so that

¢
b= —— 17 (2.25)
(¢1 Md’l)
The vectors i = 2,...,m are obtained as follows.
First, R
K¢; = M¢;_ (2.26)

is solved for aﬁi. Then a&i is made M-orthogonal with
respect to all previously generated vectors by using
a Gram-Schmidt process

1—1
;= ¢i — Z CijP; (2.27)
j=1
where R
Cij = ¢JTM¢2- (2.28)
and scaling gives
_ @
o = T an (2.29)
(dli M¢i)

It has been pointed out in many references (e.g.,
ref. 21) that the M-orthogonalization (eq. (2.27)) is
theoretically required only with respect to the two
previously computed vectors. However, it is also
well-known that round-off errors cause the Lanczos
vectors to become less and less orthogonal. Per-
forming the Gram-Schmidt operation with respect to
all previously generated vectors will not ensure the
M-orthogonality of the vectors. However, it can im-
prove the orthogonality in some cases.

Following reference 20, a final step is performed in
generating the basis vectors to produce an uncoupled
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dynamic system. Of course this is useful only when
the system is undamped or C is assumed to be
diagonal. As in the static mode method, a reduced-
order eigenvalue problem is solved (egs. (2.23)), and
a new set of basis vectors produced. The process of
explicitly computing the reduced stiffness and mass
matrices required in equations (2.23) helps alleviate
the problems caused by the lack of orthogonality of
the Lanczos vectors. The matrices M and K in
equations (2.23) are assumed to be full. That is,
no assumptions are made that particular terms in M
and K are zero based on the properties of the vectors.

2.3. Transient Response Solution Method

When the reduction methods are used and general
damping is included in the model, equations (2.5) are
coupled. In principle any of the implicit or explicit
numerical integration methods used for solving equa-
tions (2.1) could be used to solve equations (2.5). In
contrast to equations (2.1), however, equations (2.5)
are low order, not stiff, and the primary concern is
accurately integrating every equation in the system.
Therefore an integration method which reduces trun-
cation errors in the solution is highly desirable. Ac-
curacy is especially important in sensitivity analy-
ses because errors in the solution process are usually
magnified in the calculation of derivatives.

An approach that allows the use of moderately
large time steps and makes the truncation error very
small is called the matrix series expansion method in
reference 23 and the transfer matrix method in refer-
ences 24 and 25 when applied to structural dynamics
problems and it is often referred to as a Taylor se-
ries method in numerical analysis texts (c.g., ref. 26).
This method expands the solution in a Taylor series
where the number of terms determines the accuracy
of the approximation. With this series, an expression
can be written for the solution at time ¢+ At in terms
of the solution and load at time t as follows:

{Q(t+At)} _ [Wn W12J {Q(t)}
at+At) [~ | W Wy | 4(t)
Nii Ny [g(t)f

* [Nm NQ?] {Q(t)f} (2.30)
It has been assumed here that the time variation of
the load g¢(t) is approximated as a piecewise linear
function of time, and therefore the second and higher
order derivatives equal zero. Expressions for W,
and N;; are fairly complex and can be found in
references 23 and 24. The values of the coefficients
W,; and N;; depend on the number of terms taken
in the series.
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The convergence properties of the W, series for
an undamped, single-degree-of-freedom case can be
studied by considering the following Taylor series
expansion:

. 2 4 ’ 6
cos wAt =1 — (wAt) 4 (WAL (wAt)
2 4! 6!
wAt)8
ST (2.31)

It is well-known that round-off errors due to finite
precision arithmetic will cause large errors in this
series for “large” values of wAt. Thus if w is taken as
wn,, an upper bound on At can be estimated based
on round-off error. In practice At usually needs
to be much smaller than this upper bound value
for two reasons. The first reason is that the input
load history may be a complicated function of time,
and At must be small enough to accurately sample
this loading. The second, more important, reason is
that At must be small enough to accurately sample
the history of the output quantities. If At is larger
than the smallest significant period of response, peak
values of the response quantities will likely be missed.
Accordingly, in the studies reported herein At was
taken to be approximately one-eighth of the smallest
period. Since the number of terms in the series has
only a very small effect on the computational cost
of the method, 50 terms were used in this study to
make the truncations errors negligible.



Chapter 3

Critical Point Constraint

3.1. Constraint Formulation
The general form of the constraint equation is

gi(x,t) <0 (3.1)

where x is a vector of design variables and ¢ is time.
An effective approach for ensuring that this con-
straint is satisfied for all values of ¢ is the “critical
point constraint” approach described in reference 27,
pages 168-169. In this approach a set of peak val-
ues of the function g; (denoted critical points) is se-
lected. An obvious point to include is the time with
the “worst” value of g;. However, if only this point is
included, an optimization process modifying a struc-
ture based on this information might unknowingly
produce a design where the constraint is violated
at another time point. To guard against this pos-
sibility, a number of important peaks are selected.
References 28 and 29 consider in detail the efficient
location of critical points in large-scale structures
problems with many constraints. This chapter
presents a method for selecting the most important
peaks as critical points.

In the work reported herein, constraints arc as-
sumed to be placed on the displacements, velocities,
accelerations, and stresses in the structure. All these
constraints are treated similarly. Thus the critical
point constraint formulation is illustrated for the case
of displacements. Constraints are placed on selected
displacements such that

lu; (x, )] < Uallow (3.2)

where u; are the displacements at specific points in
the structure and uyjew is the absolute maximum
allowable value of the displacement. The critical
values of this constraint occur at points in time where
u; has the largest magnitude. These are identified
by examining every value of u along the response
history. In the implementation here, each constraint
is assumed to have a specified number of critical
points; five critical points for each u; ‘are selected.
Values of u where du/dt = 0 or values of u at the

end points of the time interval are local maxima of
g; and are termed candidate critical points.

3.2. Selection of Critical Points

The procedure for selecting the critical points
from these candidates can best be explained by refer-
ring to an example displacement time history shown
in figure 3.1. The critical points are labeled with
numbers and a few of the many candidate critical
points are labeled with letters. The selection crite-
ria applied to every candidate critical point are ex-
plained as follows by considering these few candidate
points. Candidate critical points a and ¢ were dis-
carded because the absolute values of the displace-
ments at these points were smaller than those at
the five other critical points. The criterion for dis-
carding candidate points b, d, and e is slightly more
complicated. From figure 3.1 it can be seen that all
three candidate points have larger displacement mag-
nitudes than that of critical point 1, for example.
However, candidate points b, d. and e are all part
of “major” peaks where a critical point is selected.
A second criterion applied to the selection process
is a requirement that only one critical point from
each major peak be selected. This ensures that the
critical points represent the total dynamic response
rather than just the high-frequency undulations on,
at worst, a single major peak.

.04

0 5 1.0 1.5 2.0 2.5 3.0
Time, sec

Figure 3.1. Example displacement time history illustrating
critical point constraint selection process.

A major peak is identified with the following
procedure. Whenever a critical point is selected after
comparing its magnitude with that at other critical
points, a special screening process is activated. This
screening process tests the displacement at every
subsequent time point to determine if it differs from
that at this last selected critical point by at least
a specified percentage (25 percent for the studies
reported herein). If so, all subsequent time points
are no longer considered part of the current major
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peak. Any candidate critical points identified while
this special screening process is in effect are compared
only against the last selected critical point.

An example is the major peak in figure 3.1 which
contains points d and 4. In the selection process,
point d is initially selected as a critical point and
the screening process is activated. The three points
where du/dt = 0 between point d and point 4 are
recognized to be part of the same major peak as d,
but since the magnitude of the displacements at these
points is smaller than at point d, they are discarded.
Point 4 is also part of the same major peak as point d,
but since the displacement magnitude there is larger
than at point d, it replaces point d as a critical point.
Before the next candidate critical point is considered,
the displacement has changed from that at point 4
by more than 25 percent and therefore is considered
to be on a new major peak.

3.3. Derivatives of Critical Point
Constraints

Once the critical points have been identified for
the nominal design, these can be used in calculating
sensitivities. Reference 27 demonstrates that the
change in time location of critical points can be
neglected in calculating derivatives of peak values
with respect to design variables by examining the
expression for the total derivative of g; with respect
to a design variable z. Considering a constraint
g(x,t) at a critical time ¢, gives

dg(z,t;) Og dgdt,

dr 8z + ot dx (33)
The last term in equation (3.3) is always zero be-
cause at interior critical points 8¢/t = 0 and on the
boundary dt./dx = 0. Accordingly, the sensitivity
calculations need to be performed only at the spe-
cific times where the critical points have been iden-
tified. This can result in a considerable savings in
computational time, especially when there are many
constraints, many time points, or many basis func-
tions used to represent the response. The details of
each sensitivity calculation method are discussed in
the next chapter.
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Chapter 4

Methods For Calculating Sensitivities

4.1. Finite Difference Methods

4.1.1. Forward and Central Difference Operators

Both the forward difference and central difference
methods have been used in this study to calculate
sensitivities. The well-known forward difference ap-
proximation to du/dz,

Au  u(z + Azx) — u(x)

— = 1
Az Ax (4.1)

and the central difference approximation,
Au  u(zr + Azx) — u(z - Az) (4.2)

Az 2Ax

are used. The truncation error for the forward
difference approximation is

Az d*u

er(Az) = - -5z

+¢Ar)  (0<(<1) (4.3)

and for the central difference approximation is

Az)? d3
( g) d—;g(ﬁmz)

er(Az) = (0<¢<

(4.4)

In applying equations (4.1) and (4.2), the selec-
tion of difference step size Az is a concern. Selection
of a large step size results in errors in the deriva-
tive due to truncation of the operator (egs. (4.3) and
(4.4)). Selection of a small step size can lead to er-
rors in the derivative due to the limited floating point
precision of the computer or algorithmic inaccuracies
in calculating u (condition errors). It is not uncom-
mon with the forward difference method (eq. (4.1))
that no acceptable value exists for Az to produce an
accurate value of du/dr considering the conflicting
requirements of minimizing truncation and condition
errors. Because the truncation error associated with
the operator of equation (4.2) is typically less than
that of equation (4.1), it is possible to use a larger

finite difference step size. The larger Az reduces the
condition error from the function evaluations and re-
sults in a more accurate value of du/dz. However,
the necessity of two function evaluations needed for
equation (4.2) makes the procedure computationally
more costly.

4.1.2. Using Vibration Modes as Basis
Functions

For many of the studies herein the natural vibra-
tion mode shapes are used as basis functions to rep-
resent the transient response. In calculating the re-
sponse of the perturbed design in equation (4.1) and
the two perturbed designs in equation (4.2), some
computational savings are possible relative to the
computations for the initial design.

If the mode shapes for the initial design are used
to represent the perturbed design, the cost of resolv-
ing the eigenvalue problem is eliminated. However,
the reduced set of equations for the perturbed system
must still be formed and M, C, and K are now full.
This coupled system is then solved with the matrix
series expansion method described in section 2.3.

If the updated mode shapes for the perturbed de-
sign are used in the analysis, many eigensolution pro-
cedures, such as the subspace iteration used here, can
begin with the mode shapes from the initial design
as approximations. Since the perturbation in the de-
sign is small, the subspace iteration procedure con-
verges rapidly. However, at least one factorization of
K is required. For large finite element models, this
can be the largest part of the computational cost.
For most of the studies in this paper, the forward
difference method used the initial mode shapes to
represent the perturbed design. Because the central
difference method was used for reference values of
derivatives, updated mode shapes were calculated for
the two required perturbed designs. In both cases,
because of the critical point constraint formulation,
the transformation from modal coordinates to phys-
ical coordinates (e.g., displacements, stresses) is per-
formed only at the critical times instead of at all time
points.

4.2. Semianalytical Methods

The direct method for sensitivity calculation is
derived by differentiating equations (2.1). The
derivation presented here follows that in reference 27,
pages 169-171. After differentiating equations (2.1)
with respect to the design variable x the result is
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?*C +K =9 - gt
dC , dK
- —u-—"u (4
dr dmu ( 5)

This system of differential equations of order n, could
be solved directly for the sensitivities du/dz, dia/dz,
and dii/dx. However, just as for the response equa-
tions, it is more efficient to consider a reduced form
of the sensitivity equations which can be obtained
by differentiating equations (2.5) with respect to z
to yield

dq —dq df dM
dC, dK
— - 9 (46

The first step in forming this equation is the calcula-
tion of the derivatives of f, M, C, and K (egs. (2.9),
(2.6), (2.7), and (2.8)) with respect to z. Using equa-
tions (2.9) gives the derivative of f with respect to

as follows:

i _deT ot

dz dz dz S

The force f is frequently not a function of the design
variables; this simplifies equation (4.7). Also, with
equation (2.6), the derivative of M with respect to z
can be written as

dM _ prdM . de”

dx dz dzx

d®
— M®&+d'M— o (48

Similar expressions can be written for the derivatives
of C and K.

The derivative dM/dz in equation (4.8) (simi-
larly for dC/dz and dK/dz) is, in general, difficult
to calculate because the finite element model may
be composed of diverse element types whose prop-
erties are complicated functions of the design vari-
ables x. For this reason, these derivatives are often
replaced with finite difference approximations. This
combination of analytical differentiation of the re-
sponse equations with finite difference matrix deriva-
tives is known as a semianalytical approach. The
semianalytical methods presented herein for calculat-
ing transient response quantities all use the forward
difference operator to approximate dM/dz, dC/dx,
dK/dz, and df /dz. For several important classes of
design variables, however, M, C, and K are linear
functions of z. For example, M and K in a finite
element model composed of truss members are linear
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functions of member cross-sectional area. In these
cases, there are no truncation errors and large finite
difference step sizes can be used to reduce the condi-
tion error and produce accurate derivatives.
Calculation of the first term in equation (4.7)
and the second and third terms in equation (4.8)
depends on the particular choice of basis functions &.
Considerable reduction in computational cost results
if the vectors @ are taken to be independent of z that
is fixed. Methods which are less costly than exact
methods are also available to approximate d®/dx.
Two semianalytical procedures which address these
concerns are discussed in sections 4.2.1 and 4.2.2.

4.2.1. Fized-Mode Semianalytical Formulation

If the basis vectors are assumed not to be func-
tions of the design variables x, d®/dx equals 0. This
significantly simplifies equations (4.7) and (4.8). Af-
ter forming the derivatives of f, M, C, and K, the
right-hand side of equations (4. 6) can be formed us-
ing q, q, and q from the solution of equations (2.5).
The matrix series expansion method ensures that ac-
curate values of §, 4, and q are available for this
step. Equations (4.6) can then be integrated to yield
dd/dz, dd/dz, and dq/dr. Herein this fixed-mode,
semianalytical implementation of the direct method
is called the semianalytical method.

4.2.2. Variable-Mode Semianalytical
Formulation

If the basis functions are assumed to be functions
of z, the calculation of d®/dx either exactly or ap-
proximately is required to form equations (4.7) and
(4.8). Vibration modes are the most popular basis
functions, and the calculation of their derivatives has
been studied extensively. Reference 30, for exam-
ple, surveys several methods for calculating deriva-
tives of vibration mode shapes from a computational
point of view. One of the most popular methods,
Nelson’s method (ref. 31), requires a factorization of
the system equations for each eigenvector considered.
This can be a considerable computational burden for
large systems. Since the overall objective here is
the accurate calculation of transient response sen-
sitivities, not eigenvector sensitivities, it seems desir-
able to investigate cheaper approximate methods for
calculating d®/dz.

One approximate method for calculating the
eigenvector derivatives is similar to the modal ap-
proach for transient analysis. This modal method
approximates each eigenvector derivative as a
linear combination of the modes themselves.
In many cases, however, a very large number of



eigenvectors are required for accurate derivatives.
Furthermore, the eigenvector derivative approxima-
tion produced by this method cannot improve the
transient response sensitivities because they are
contained entirely within the span of the modes
themselves.

A method proposed by Wang (ref. 32) to alle-
viate the poor performance of the modal method
also improves the transient sensitivities. This modi-
fied modal method is derived by first differentiating
equations (2.3) to yield

d®;  dw? dK dM
KMol = I MP, — — & +w°—®;
( w]M) dx dz Me; dr T dw(fé)

This equation cannot be solved directly since the left-
hand side is singular. Wang's approach, however,
was to calculate a pseudostatic solution to this equa-
tion by neglecting wJZM on the left-hand side of equa-
tions (4.9). The solution to this pscudostatic equa-
tion introduces the change in basis associated with
changes in the design variables and is significant in
improving the transient response sensitivities. The
mode shape derivative can then be written as

(4.10)

d®; (d®, el
= (=< A @y
dr (dx>s+:£‘1 K=k

where (d®;/dz), is the pscudostatic contribution.
The coefficients A are obtained by substituting
equation (4.10) into equations (4.9), multiplying by
‘I>;‘-r, and simplifying as

2uT (dK _ 2dM
wi P (HE‘“’J'TE)‘I’J‘

Ajk = (k#34) (411)
J wf,(wjz —w;‘f,)
or
1 _pdM )

Given these approximate values of eigenvector deriva-
tives, equations (4.7) and (4.8) can be formed. Then
equations (4.6) can be solved for d4/dr, dq/dz,
and dq/dx just as in the fixed-mode, semianalytical
method.

4.2.3. Recovery of Physical Sensitivities

Given dq/dz, the derivative of the physical dis-
placement vector du/dx can be written as

du _dq d®

with similar expressions for du/dz and dii/dx. The
calculation of stresses begins with
o =Su (4.14)

where S is the stress transformation matrix. Substi-
tuting equation (2.4) yields

o = S®&q (4.15)

when equation (4.15) is differentiated, the stress
sensitivitics can be written as

dq dS d®
o _ g9 Ppq S

dx dr dzx d (4.16)

The matrix dS/dz is approximated with the forward
difference operator. Because of the critical point con-
straint formulation, the transformation from these
modal quantities to physical displacements, veloci-
ties, accelerations, and stresses is performed only at
the critical times.

4.2.4. Mode Acceleration Method

The mode acceleration method was presented in
chapter 2 as a technique for improving the dynamic
displacements and stresses when the static compo-
nent is significant. It is also possible that it can im-
prove the sensitivities of displacements and stresses.
An expression for the sensitivities using the mode
acceleration method is obtained by first rearranging
equations (4.5) to yield

du(t) _ [df dK du dC .
dr drg(t) dr Cdl‘ B da:u
di dM
—-M— - —1 4.
dx dx u] (4.17)

If a reduced basis approximation is applied uniformly
to every term in equations (4.17), the resulting du/dx
would agree with that obtained from the solution
of equations (4.6). The objective of a mode accel-
eration solution is to selectively apply the modal
approximation to equations (4.17) with the goal of
improving the values of du/dz. In applying the
mode acceleration method to the transient response
problem (egs. (2.11)), 1 and 1 are obtained from
the mode displacement method. Here, in apply-
ing the mode acceleration method to the sensitivity
equations, u is obtained from the solution to equa-
tions (2.19) and du/dz and dii/dz are obtained from
the solution to the mode displacement, semianalyti-
cal equation (egs. (4.6)). In the derivation here, the
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modes @ are assumed to be fixed. Substituting equa-
tions (2.19) and u = ®q, it = ®q, di/dr = ®dq/dxr,
and dii/dz = ®d§/dz into equations (4.17) yields

T =k g0 - X ke

-$0"2Cq - Qn—zq} _col
dzx

dC dg dM
-1 _"= .
- Ba-Me— - —F @} (4.18)

The modal approximation for K~1 (egs. (2.18)) is
introduced into all terms in equation (4.18) that
involve damping just as in the mode acceleration
solution described in chapter 2. It was also pointed
out in chapter 2 that K~!M® in equation (4.18)
is exactly ®02-2. Based on these considerations,
equation (4.18) can be simplified to yield the mode
acceleration solution of the sensitivity equations

dult) _ - [ji %K;K_lf}g(t)

+9072 [dK 272C - dCJ '
dz

_a=dq
- dN2Cc2
dx f Cd

T

2029 (4 19)

dK dM "
dr

i 1 ¢ i —
+K” [dz dxq) d

The key to the effectiveness of this mode acceleration
sensitivity method is the usage of the exact K~!
in the calculation of the K~1(dK/dz)®Q 2 and

~1(dM/dz)® terms. The explicit calculation of
these terms expands the basis beyond the span of
the modes in a manner similar to the pseudostatic
term in the modified modal method described in the
previous section. When equations (4.19) are used,
the stress sensitivities can be calculated as

do du dS

where u is obtained from equations (2.11).

It is worthwhile to contrast the sensitivity ap-
proach of equations (4.19) with an alternate approach
of a fixed-mode, overall forward difference method
with the response quantities calculated with a mode
acceleration method. This overall forward difference
approach has one obvious drawback. The mode 4c-
celeration method requires the costly factorization of
K for the perturbed design. Therefore, much of the
cost savings achieved by keeping the modes fixed is
lost. A second defect of the overall forward difference
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method is that it is not as effective as the method
of equations (4.19). The mode acceleration method
in the overall finite difference procedure provides a
good approximation to the first term (pseudostatic
term) in equatlons (4.19). However, the key effects
of the K™ 1(dK/dz)®Q~2 and the K~ YdM/dz)®

terms are completely neglected.



Chapter 5

Numerical Studies

The different transient response methods de-
scribed in chapter 2 and the sensitivity calculation
methods described in chapter 4 are applied to three
example problems in this chapter. The three example
problems are small but they all have certain charac-
teristics which complicate the dynamics and sensi-
tivity calculations. The first example is the five-span
beam with relatively closely spaced frequencies and
loaded with a moment applied at a single point. As
a result, many modes participate in the dynamic re-
sponse. The second example is the delta wing loaded
with a uniform pressure load. Although the higher
frequency modes are not significantly excited by this
loading, the analysis is complicated by the laminated
plate elements in the model and the sensitivity anal-
ysis is complicated by the lamina thickness design
variables considered. The third example is a can-
tilever beam with a stepped cross section loaded with
an applied rotation at the root. This loading is iner-
tial, depends on the mass, and therefore also depends
on the values of the design variables. The first two
examples consider point mass and standard thick-
ness design variables. The cantilever beam example
also includes so-called shape design variables (sec-
tion lengths) that are known to cause difficulties in
the sensitivity analysis in some cases.

One of the key questions addressed in this chap-
ter is how well a particular set of basis vectors rep-
resents the full system of order ng. This full system,
however, is the result of a particular finite element
discretization. Thus the accuracy of the response or
sensitivities as a function of the finite element mesh is
also an appropriate question. This question is espe-
cially important when a large number of basis vectors
(ny close to ng) are required for an accurate solution
in a problem with a given finite element mesh. Either
the basis vectors are doing a very poor job of span-
ning the solution space or the loading is legitimately
exciting this high-frequency behavior.

In this chapter two terms are used to describe
these studies which consider the dynamic response
as a function of the number of basis vectors or the
number of finite elements in the model. The effect
of the number of basis vectors on the accuracy of

the response or sensitivities for a given finite element
mesh is called a “modal convergence” study. In this
case, the goal is for the n, basis vectors to provide
an accurate solution to the approximate equations of
order ng. The question of whether the finite element
model associated with this system is an accurate
representation of the continuum is addressed in a
“mesh convergence” study. In some cases, it will be
shown that the modal convergence is strongly related
to the mesh convergence. That is, when a large
number of basis vectors are required for an accurate
solution for a given finite element mesh, the finite
element mesh is doing a poor job of representing the
continuum. In other cases, even though the finite
element mesh is providing an accurate representation
of the continuum, some sets of basis vectors are doing
a poor job of representing the response or sensitivities
for this ngth order system.

Several additional comments on the concept of
a modal convergence study are in order. Clearly
the use of the term convergence is imprecise because
the accuracy of the approximate solution with dif-
ferent numbers of modes is compared only with the
finite-degree-of-freedom solution rather than the con-
tinuum solution. However, it is assumed that an
“acceptable” finite element model must do a good
job of representing the low-frequency modes of the
structure. Therefore, the accuracy of the dynamic
solution with a small number of modes from the
finite-degree-of-freedom model is a very reasonable
approximation to the accuracy of the dynamic solu-
tion with a small number of modes calculated from a
continuum model. Thus the convergence of the solu-
tion as a function of the number of modes calculated
from the finite element model is a reasonable approxi-
mation to the true modal convergence obtained when
the modes are calculated from the continuum model
as long as the number of modes considered is small.
Furthermore, if the number of modes required for an
accurate calculation of either the response or sensi-
tivities is not small, the basis vectors or the method
will be considered poor.

5.1. Five-Span Beam Example

The first example considered is a five-span, planar
beam example taken from reference 33 and shown
in figure 5.1. An initial investigation of the dis-
placement transient response of this problem was
also considered in reference 34. In most of the
studies, the beam is modeled with three beam fi-
nite elements per span resulting in 26 unconstrained
degrees of freedom. The effect of finite element
discretization is considered by developing alternate
models with 6, 9, 12, ... elements per span. As

17



shown in figure 5.1, translational and rotational vis-
cous dampers were also added to the beam. These
devices are representative of velocity feedback con-
trollers which might be added to flexible structures.
Cases with and without dampers were considered.
The numerical values of the damping coefficients
from reference 33 of ¢; = 0.008 sec-lb/in. and ¢y =
1.2 sec-lb were used. In one example, modal damp-
ing with & = 0.005, which is intended to represent
typical structural damping, was used instead of the
discrete dampers. A case was also considered where a
1.0-1b mass (approximately 20 percent of the mass of
the beam) was added to the beam at the location of
the translational damper. The eigenvalues for three
cases using the model with three elements per span
are shown in table 5.1. The additional point mass
has a significant effect on the frequencies, whereas
the dampers have little effect. The effect on frequen-
cies of increasing the number of elements per span in
the finite element model is shown in table 5.2. It can
be seen that the lowest 10 frequencies are fairly well
converged even for the model with three elements
per span. In the transient analysis, the applied load-
ing for all problems consisted of a point moment of
0.04405 in-1b applied at the right end of the beam.
Two different time functions for this load, a step and
a ramp (shown in fig. 5.1), were considered.

Beam cross

Uy Uy uy Uy oW se;t(l)oir;
lJ Ifglg‘)l* lf‘1> :. .
s oeapgs o Mo ,
i 2 15 h =0.0625 in.
30 in.
M Ramp load M Step load
in-l’b .04405 in-lb .04405

0 2 1, sec 0 t, sec

Figure 5.1. Five-span beam with applied end moment.

5.1.1. Beam Dynamic Response

The first part of this study focused on the tran-
sient response of the beam with the mode dis-
placement, mode acceleration, static mode, and
Ritz-Wilson-Lanczos (RWL) methods. Displace-
ment, velocity, acceleration, and stress resultant re-
sponse quantities are considered. For this beam ex-
ample, all these response quantities are taken at a
location 10.0 inches from the left end of each span.
This point is the end of the first element in each span
when three elements per span are used in the model.

5.1.1.1. Character of response. In the first
case, the ramp loading was applied to the undamped

18

Table 5.1. Eigenvalues For Three Five-Span Beam Cases

Undamped

Damped with with point
Undamped point dampers mass

Mode |Frequency, Hz|Frequency, Hz Damping ratio| Frequency, Hz

1 1.1707 1.2210 0.0851 0.9401
2 1.2991 1.2926 .0352 1.2594
3 1.6254 1.6298 .0690 1.5445
4 2.0491 2.0910 .0590 1.8005
5 2.4628 2.5497 .0958 2.3729
6 4.7343 4.8426 .0044 4.2327
7 5.0105 4.9785 .0413 4.8858
8 5.6472 5.7703 .0126 5.6400
9 6.4153 6.4178 .0407 5.9261
10 7.1274 7.2229 0193 6.8762

Table 5.2. Beam Frequencies With Different Numbers of
Finite Elements Per Span

Frequency, Hz, for—

Mode 3 elements | 6 elements 9 elements | 12 elements
1 1.1707 1.1698 1.1698 1.1698
2 1.2991 1.2979 1.2978 1.2978
3 1.6254 1.6230 1.6229 1.6229
4 2.0491 2.0445 2.0442 2.0442
5 2.4628 2.4547 2.4542 2.4542
6 4.7343 4.6828 4.6798 4.6792
7 5.0105 4.9504 4.9469 4.9462
8 5.6472 5.5652 5.5601 5.5593
9 6.4153 6.3053 6.2980 6.2967

10 7.1274 6.9974 6.9874 6.9857

beam modeled with three elements per span. All
26 modes were used in the analysis. Time histo-
ries of selected displacement, velocity, acceleration,
and bending moment components are shown in fig-
ures 5.2, 5.3, 5.4, and 5.5, respectively. The displace-
ment history (fig. 5.2) is relatively smooth indicat-
ing that only the low-frequency modes of the beam
are contributing to the response. The velocity and
bending moment response histories are more jagged
indicating participation by higher frequency modes.
The acceleration history (fig. 5.4) is extremely jagged
with contributions from the highest frequency modes
represented by the finite element model.

The impulsive nature of the step load makes
the higher frequency modes much more important.
This can be seen in figure 5.6 where the time his-
tory of velocity in the second span (fig. 5.1) 1y is



shown. By comparing this velocity history with that
in figure 5.3 the increased importance of the high-
frequency modes becomes obvious.

02,
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Figure 5.2. Time history of displacement ug for five-span
beam subjected to transient end moment. Ramp
load; undamped beam.
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Figure 5.3. Time history of velocity ug for five-span beam
subjected to transient end moment. Ramp load;
undamped beam.

The addition of the point dampers shown in fig-
ure 5.1, on the other hand, tends to reduce the im-
portance of the high-frequency modes. This is shown
in figure 5.7 where again 12 is shown. Comparing fig-
ures 5.7 and 5.3 shows that the velocity history for
the damped case is significantly smoother than for
the undamped case.

This changing character of the time histories with
temporal or spatial differentiation of the response
function or the addition of dampers is expected. The
implications of this phenomenon on calculating the
sensitivities of these response quantities are discussed
below.

5.1.1.2. Modal convergence. When vibration
modes or other functions are used to reduce the ba-
sis in a transient response problem (eq. (2.4)), the

Mz,

in/sec

i )

0 5 1.0 1.5 2.0 2.5 3.0

Time, sec
Figure 5.4. Time history of acceleration ip for five-span
beam subjected to transient end moment. Ramp
load; undamped beam.
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Figure 5.5. Time history of bending moment in span 5 for
five-span beam subjected to transient end mo-
ment. Ramp load; undamped beam.
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Time, sec
Figure 5.6. Time history of velocity 1ug for five-span beam
subjected to transient end moment. Step load;
undamped beam.

key question is how many modes are required for
an accurate solution. This section addresses that
question for the five-span beam example with the
response calculated with mode displacement, mode
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acceleration, static mode, and RWL methods. Un-
less otherwise stated, all the response quantities are
considered at critical times selected with the methods
discussed in chapter 3.

A0¢
OSF
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-05F
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0 .5 1.0 1.5 2.0 2.5 3.0

Time, sec
Figure 5.7. Time history of velocity 1y for five-span beam
subjected to transient end moment. Ramp load;
damped beam.
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Figure 5.8. Modal convergence of selected displacements for
five-span beam. Ramp load; undamped beam:;
mode displacement method.

The baseline case of ramp loading applied to the
undamped beam modeled with three elements per
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Figure 5.9. Modal convergence of selected velocities for five-
span beam. Ramp load; undamped beam:; mode
displacement method.

span is considered first. Figure 5.8 shows the conver-
gence of selected displacements at critical points as
a function of number of modes. The displacement-
critical point combinations were selected to be rep-
resentative of both the largest and smallest critical
values. In figure 5.8 and in all the other figures show-
ing convergence of response quantities or sensitivi-
ties, the figure key indicates the quantity and the
time of occurrence in seconds. In all cases the con-
vergence is very good with approximately 10 modes
yielding a converged solution. Figure 5.9 shows a
similar plot for velocities. Again the convergence is
good. The modal convergence for accelerations, how-
ever, 1s poor as shown in figure 5.10. Figures 5.11 and
5.12 show the modal convergence of selected bending
moments and shear forces, respectively, and again,
the convergence is poor.

To possibly alleviate this poor convergence, the
alternate reduction methods discussed in chapter 2
were applied to this problem. The modal conver-
gence for displacements calculated with the mode
acceleration method (fig. 5.13) is even better than
that found with the mode displacement method. The
convergence of bending moments and shear forces
has improved dramatically from the mode displace-
ment results as can be seen in figures 5.14 and 5.15.
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As mentioned in chapter 2, the mode acceleration
method does not apply to the calculation of veloci-
ties and accelerations.

A similar improvement was noted with the static
mode method. As an example, consider the excellent
convergence of shear forces shown in figure 5.16.
However, the addition of the static solution provides
no improvement in the convergence of acceleration as
shown in figure 5.17.

The RWL method is attractive because of the
significantly reduced cost of calculating the vectors
compared with solving the eigenproblem. In this
five-span beam example, the modal convergence is
also as good as the mode acceleration or static mode
methods. The good convergence of the shear forces
is shown in figure 5.18. Like the other reduction
methods, however, the convergence of accelerations
is poor (fig. 5.19).

The modal convergence of the response quanti-
ties for the step-loaded case is generally much poorer
than for the ramp-loaded case. The convergence of
the displacements is reasonably good. Convergence
of velocities, accelerations, and stresses, however, is
poor. This poor convergence is not surprising con-
sidering the “jaggedness” of the velocity time his-
tory shown in figure 5.6. As an example, two figures
with the convergence of bending moments plotted as
a function of the number of modes are shown. The
first, figure 5.20, shows the bending moments cal-
culated with the mode displacement method. Con-
vergence is poor but this is not surprising since the
convergence was poor with the mode displacement
method for the ramp-loaded case (fig. 5.11). For
this ramp-loaded case, the convergence of the bend-
ing moments improved dramatically when the mode
acceleration method was used as can be seen in
figure 5.14. Although convergence is improved for
the step-loaded case by using the mode acceleration
method (fig. 5.21), the convergence is still fairly poor.

Judging from the velocity time history in fig-
ure 5.7, it might be expected that including damp-
ing would improve the modal convergence of the re-
sponse quantities. For the ramp-loaded, undamped
case, the poorest convergence was for the acceler-
ations (fig. 5.10). For the ramp-loaded case with
discrete dampers, there is an improvement in modal
convergence as seen in figure 5.22. For the case with
0.5 percent modal damping there is also a slight im-
provement in modal convergence. However, in nei-
ther case does the damping completely alleviate the
poor convergence.

All the previous convergence results are at critical
points located by the method described in chapter 3.
When a different number of modes is used in the anal-
ysis, the critical time for a particular critical point
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Figure 5.14. Modal convergence of selected bending mo-
ments for five-span beam. Ramp load; un-

damped beam; mode acceleration method.
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Figure 5.15. Modal convergence of selected shear forces for

five-span beam. Ramp load; undamped beam:;
mode acceleration method.

usually shifts slightly. Consequently, the results for
a given response quantity-critical point combination
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Figure 5.16. Modal convergence of selected shear forces for
five-span beam. Ramp load: undamped beam:

static mode method.
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Figure 5.17. Modal convergence of selected accelerations for
five-span beam. Ramp load; undamped beam;

static mode method.
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Figure 5.20. Modal convergence of selected bending mo-
ments for five-span beam. Step load; un-
damped beam; mode displacement method.

occur at different times depending on the number
of modes used in the analysis (the values shown in
parentheses in the figures are for the most refined so-
lution). It is natural to ask whether response quanti-
ties at fixed times plotted as a function of number of
modes would show similar convergence. Figures 5.23
and 5.24 show the modal convergence of selected ve-
locities and bending moments, respectively, at fixed
times. The mode displacement method was used in
the analyses. The particular response quantities and
times were selected to span the range between largest
positive and negative values. As can be seen in fig-
ure 5.23, the convergence of velocities is good. From
figure 5.24, it can be seen that the convergence of the
bending moments is poor and remarkably similar to
the critical point convergence results (fig. 5.11). Thus
it would appear that the critical point constraint for-
mulation does not significantly affect the modal con-
vergence of the response.

5.1.1.3. Mesh convergence. Table 5.2 shows
the convergence of the lowest 10 frequencies as a
function of the number of elements used to model
each span of the beam. The convergence of these
lower frequencies is rapid. The convergence of various
response quantities as a function of the mesh is also
a concern.
The modal convergence cannot be uncoupled
from the mesh convergence. This was discussed in
reference 33 for the derivatives of damping ratios
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ments for five-span beam. Step load; un-
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sec

O u 132

O « 159

r A u, 228

-
C<

-2 1 1 )
0 10 20 30

Number of modes
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five-span beam. Ramp load; discretely damped
beam; mode displacement method.
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ment method.

calculated with undamped vibration modes. For sev-
eral cases, the modal convergence of the derivatives
was poor. As the mesh was refined, convergence was
achieved only when almost all the available modes
were used in calculating the damping ratio. Clearly,
this is an example where the modal basis provides a
very poor approximation to the actual solution.
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Figure 5.25. Modal convergence of selected shear forces for

five-span beam modeled with six elements per
span. Ramp load; undamped beam; mode

displacement method.

Figure 5.25 shows the modal convergence of shear
force for the five-span beam modeled with six ele-
ments per span and the transient analysis performed
with the mode displacement method. The conver-
gence for this case is just as poor as for the case with
three elements per span shown in figure 5.12. How-
ever, a plot of convergence of this shear force as a
function of the number of elements per span, when all
modes are used in cach analysis (figure 5.26), shows
good convergence. Clearly, the convergence of shear
forces for the ramp-loaded five-span beam is similar
to that reported for derivatives of damping ratios in
reference 33; the vibration modes are simply doing a
poor job of representing the solution.

Figure 5.27, which shows the convergence of ac-
celerations for the step-loaded beam as a function
of elements per span, indicates a different behavior,
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however. Here, the very poor convergence is due

to the higher frequency modes being excited by the
step loading. As the mesh is refined, the number of
high-frequency modes increases, and these continue
to have a significant contribution to the acceleration.

In evaluating the accuracy of the sensitivity cal-
culation procedures in section 5.1.2, particular atten-
tion must be paid to the convergence characteristics.
Some convergence problems such as those caused by
the use of vibration mode shapes can be improved by
the use of alternate basis functions. However, other
convergence problems, such as for the accelerations
in the step-loaded case, are inherent in the problem
definition.

5.1.2. Sensitivities of Beam Dynamic Response

In the previous section, the transient response of
the five-span beam was considered in detail. In this
section, the calculation of sensitivities of displace-
ments, velocities, accelerations, and stresses with re-
spect to various design variables is considered.

5.1.2.1. Design variables. Two different classes
of design variables were considered. The first design
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variable is a concentrated mass m (initially zero) at
the location of the translational damper. This de-
sign variable was also considered in reference 33. The
derivatives of the system mass and stiffness matrices
with respect to this design variable are constant and
zero, respectively. As a consequence, the derivatives
of the system matrices required in the semianalyti-
cal methods can be calculated exactly by a simple
forward difference operator. The beam thicknesses
in each of the five spans were also design variables.
Derivatives with respect to the five thickness design
variables showed similar characteristics. Herein, re-
sults for derivatives with respect to the thickness in
the rightmost span hj along with derivatives with
respect to the point mass m are presented.

5.1.2.2. Effect of finite difference step size. The
methods described in chapter 4 for calculating sensi-
tivities all rely on finite difference operators at some
stage in the algorithm. The forward and central
difference methods rely on the operators in equa-
tions (4.1) and (4.2) to calculate derivatives of re-
sponse quantities. In the semianalytical methods, the
derivatives of the system matrices are calculated with
the forward difference operator in equation (4.1). In
all cases the finite difference step size must be se-
lected so that the operator provides a reasonable ap-
proximation to the derivative. If the step size is too
large, the error due to truncating the series approx-
imation of the derivative is large. If the step size
is too small, the numerical condition error in per-

forming the function evaluations (dynamic analyses)
becomes large.

To assess the effect of step size on the calcula-
tion of sensitivities for the five-span beam, deriva-
tives were calculated with the three methods with
various step sizes. In this study the beam was un-
damped and the ramp loading was applied. All 26
vibration modes were included in the analysis. Fig-
ure 5.28 shows the estimated derivative of displace-
ment uy at critical point 5 with respect to the point
mass design variable m as a function of step size.
As mentioned, the derivatives of the system matri-
ces with respect to this design variable can be calcu-
lated exactly in the semianalytical method. As a re-
sult, the derivative estimated with the semianalytical
method is approximately constant for the six-order-
of-magnitude change in step size shown in the figure.
The central difference method uses the higher order
operator and provides good accuracy over most of
the step size range shown in the figure. The forward
difference operator provides good accuracy with the
smaller step sizes but begins to diverge earlier for the
larger step sizes than the central difference method.

Figure 5.29 shows the estimated derivative of dis-
placement u; at critical point 5 with respect to the
rightmost span thickness hg as a function of step size.
In this case. the system mass matrix is a linear func-
tion of this design variable and its derivative can be
represented exactly by the forward difference oper-
ator. The system stiffness matrix is a cubic func-
tion of this design variable and its derivative can only
be approximated by the forward difference operator.
Still, the derivative approximation computed by the
semianalytical method is very accurate except for the
largest step size and is no worse for this case than the
much more costly central difference method. Again,
the forward difference operator results in substantial
errors for the larger step sizes.

Because this example has a relatively small num-
ber of degrees of freedom, there is little condition
error when small step sizes are used. To assess the
effects of condition error which would occur for larger
problems, the derivative approximations for the five-
span beam problem were also calculated with 32-
bit floating point precision compared with the 60-
bit precision used in the studies described above.
The estimated derivative of displacement ug at criti-
cal point 5 with respect to the point mass is plot-
ted as a function of finite difference step size in
figure 5.30. Derivative approximations are calculated
using the semianalytical method, the central differ-
ence method, and the forward difference method. For
the larger step sizes, the results from all three meth-
ods agree well with those calculated with 60-bit pre-
cision. For step sizes smaller than 10~ in., there is

27



considerable error in the derivative approximations
calculated with the forward and central difference
methods. The derivative approximations calculated
with the semianalytical method, however, are highly
accurate over the entire range of step sizes shown in
the figure.
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Figure 5.30. Effect of finite difference step size on accuracy
of displacement derivative with respect to point
mass design variable. Calculations performed
with 32-bit precision; ramp load; undamped
beam.

5.1.2.3. Modal convergence of sensitivities. The
first case considered is the undamped beam with the
ramp load. Figure 5.31 shows the convergence of
selected estimated derivatives of displacements with
respect to m at various critical points. The mode
displacement method was used and the derivative ap-
proximations were calculated with the central differ-
ence operator with updated modes. The convergence
is good although slightly poorer than the conver-
gence of the displacements themselves (fig. 5.8). The
convergence of the estimated displacement deriva-
tives with respect to the thickness design variable is
similar.

Although the modal convergence of the velocities
for this case is good (fig. 5.9), the convergence of se-
lected estimated derivatives of velocity with respect
to m is generally poor (fig. 5.32). Given the poor
convergence of the accelerations shown in fig. 5.10,
it is not surprising that the convergence of the sen-
sitivities of the accelerations is also very poor. From
figure 5.33 it can be seen that the derivative approx-
imations of the four selected critical point acceler-
ations with respect to the thickness design variable
are essentially not converging with increasing num-
ber of modes. It should be pointed out again that
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Figure 5.31. Modal convergence of derivatives of selected
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able. Ramp load; undamped beam: mode dis-
placement method: central difference operator.

these derivative approximations of velocity and ac-
celeration are calculated with the central difference
method and updated mode shapes; thus, the numer-
ical errors are minimized. The poor convergence ex-
hibited in figures 5.32 and 5.33 is due to the poor ap-
proximation of the sensitivities by the mode shapes.

Similar modal convergence behavior is observed
for sensitivities of the stress resultants. This is con-
sistent with the poor convergence of the stress resul-
tants calculated with the mode displacement method
(figs. 5.11 and 5.12). Figure 5.34 shows the poor
convergence of derivative approximations of selected
bending moments with respect to the thickness de-
sign variable. It can be seen that the convergence of
the bending moment derivative approximation in the
rightmost span with respect to the thickness in the
rightmost span (dMs/dhs) is especially poor.

It was shown in the previous section that sev-
eral approaches are available for overcoming the
poor convergence of bending moments and shear
forces in this beam example. The mode acceleration,
static mode, and RWL methods all produced good
modal convergence of bending moments and shears
as shown in figures 5.14, 5.15, 5.16, and 5.18. Un-
fortunately this type of dramatic improvement does
not occur for the sensitivities of the stress resultants.
Figure 5.35 shows the convergence of the bending
moment derivative approximations with respect to
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the thickness design variable where the analysis was
done with the RWL method. As in the studies dis-
cussed that used the mode displacement method,
the sensitivities were calculated by the central dif-
ference operator with the basis vectors updated for
the perturbed design. Convergence of dMs;/dhs is
somewhat improved compared with the mode dis-
placement case. Other quantities show convergence
similar to the mode displacement case; none of these
convergence histories can be described as good. Con-
vergence of the shear force derivative approximations
with the RWL method is considerably worse than for
the bending moments.
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Figure 5.36. Modal convergence of derivative approxima-
tions of selected bending moments with re-
spect to mass design variable. Ramp load; un-
damped beam; RWL method; semianalytical
formulation.

The semianalytical methods have also been used
for calculating sensitivities of stress resultants. Fig-
ure 5.36 shows the convergence of bending moment
derivative approximations with respect to the mass
design variable calculated with the fixed-mode, semi-
analytical method and RWL vectors. The conver-
gence is very similar, especially for larger numbers
of modes, to that of the central difference method.
The mode acceleration, semianalytical method, and
the semianalytical method with approximate d®/dz
were also tried. Again, the modal convergence curves
had the same jaggedness as for previous cases.
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Considering these difficulties with modal conver-
gence for the ramp-loaded cases, especially poor
convergence would be expected for the step-loaded
case. For the ramp-loaded case, the convergence
of displacement derivative approximations with re-
spect to the mass design variable was reasonably
good (fig. 5.31). For the step-loaded case, the modal
convergence of the same displacement sensitivities is
poor as shown in figure 5.37. The modal convergence
of higher order sensitivities (velocities, accelerations,
and stresses) is extremely poor.

Adding damping slightly improved the modal con-
vergence of the response quantities but did not com-
pletely alleviate the convergence problem. The re-
sult for sensitivities is similar. Figure 5.38 shows the
convergence of velocity sensitivities for the discretely
damped case. The convergence is slightly improved
over the undamped case shown in figure 5.32, but the
curves are still fairly jagged. Convergence of sensi-
tivities for the case with modal damping is also very
similar to that in the undamped case.
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Figure 5.37. Modal convergence of derivative approxima-
tions of selected displacements with respect to
mass design variable. Step load; undamped
beam; mode acceleration method; semianalyti-
cal method.

5.1.2.4. Mesh convergence of sensitivities. Just
as for the response quantities, additional insight can
be obtained by considering the convergence of their
sensitivities with increasing number of elements per
bay. The case of the stress resultants will be con-
sidered, since they were shown to converge well with
mesh refinement (fig. 5.26) but poorly as a function
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of number of vibration modes used in the analysis.
Figure 5.39 shows the convergence of derivative ap-
proximations of shear force with respect to the mass
design variable as a function of number of elements
per bay. Surprisingly, the convergence is extremely
poor.

5.1.2.5. Fized versus updated modes in sensitivity
celculations. As mentioned, the computational cost
of updating the vibration modes for the perturbed
analyses is substantial. The question of whether
the modes from an initial design can be used in a
finite-difference-based procedure to calculate sensi-
tivities of the transient behavior has received consid-
erable attention in the literature. In reference 35, it
was shown that there is a substantial difference in
the derivatives of aircraft flutter speeds when fixed
modes are used rather than the updated modes. In
reference 33, however, there was little difference in
the derivatives of damping ratios for the five-span
beam when either fixed or updated modes were used.
This was investigated here with the same five-span,
undamped beam under the step load. As shown in
figure 5.37 where the derivative approximations were
calculated with the semianalytical, mode accelera-
tion method, convergence with respect to the number
of modes is very slow. Figure 5.40 shows the modal
convergence of derivative approximations of selected
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Figure 5.39. Convergence of derivative approximations of se-
lected shear forces with respect to mass design
variable as function of number of elements per
span. Ramp load: undamped beam; mode dis-
placement method; central difference operator.

displacements with respect to hs calculated with for-
ward difference procedures. Results with both fixed
and updated vibration modes are shown. Again, the
convergence as a function of number of modes is poor.
However, for all three derivative approximations, the
results are nearly the same for both the fixed mode
and updated mode cases.

5.2. Composite Delta Wing Example

The second example considered is an aircraft delta
wing with laminated composite cover skins taken
from reference 36 and described in detail in refer-
ence 37. The finite element model of this structure
is shown in figure 5.41. Since the wing is geomet-
rically symmetric about the midplane through its
thickness (X-Y plane), only the upper half of the
wing is modeled, and boundary conditions enforcing
antisymmetric motion are imposed on the joints ly-
ing in the X-Y plane. The wing is also cantilevered
at the root. The model contains a total of 88 joints
with a total of 140 unconstrained degrees of freedom.
The webs in the wing are made of titanium and are
modeled with 70 shear panel finite elements along
with rod elements through the thickness of the wing.
The cover skins are made of a moderate-modulus

31



t.,
séc Modes

O du /dm 1.48  Fixed
O du,/dm 2.24  Fixed
A dug/dm 2.80 Fixed
® du /dm 1.48  Updated
B du,/dm 2.24  Updated
'06F A dugidm 2.80 Updated
04
024
du;
an’ oL
in/lb
-.02}
-.04}
-.06 1 A }
0 10 20 30
Number of modes
Figure 5.40. Modal convergence of derivative approxima-

Figure 5.41.

32

tions of selected displacements with respect to
mass design variable calculated with both fixed
and updated vibration modes. Step load; un-
damped beam; forward difference methods.

88 joints
140 unconstrained degrees

Finite element model of composite delta wing.

(Ey = 21 x 10°% psi), graphite-epoxy material with
0°, £45°, and 90° lamina where the 0° material runs
spanwise along the wing. These cover skins are mod-
eled with membrane finite elements; thus, only the
total thicknesses (and not the stacking sequence of
plies) of each lamina are important. The structural
mass is 6003 lb, but most of the wing mass is due to
a fuel mass of 93650 1b distributed over the joints.
The spatial distribution of the load is the same as the
static load from reference 37 and is roughly equiv-
alent to a 144-psf pressure load on the wing skin.
A step loading function was used as the time func-
tion for all cases. The lowest 10 vibration frequen-
cies for the wing are shown in table 5.3. Damping
is accounted for by assuming 0.5 percent of critical
damping for all modes.

Table 5.3. Lowest 10 Vibration Frequencies
for Delta Wing

Mode Frequency, Hz

2.055
2.765
4.104
4913
5.920
6.944
7.451
8.421
9.583
9.880

© L N O U da W o —
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5.2.1. Wing Dynamic Response

The character of the dynamic response of the
delta wing is considerably different than that of the
five-span beam. Shown in figure 5.42 is a time history
of acceleration at the wingtip. Although 64 modes
were included in the analysis, it is evident from
figure 5.42 that only the low-frequency modes are
being excited. The same is true for stresses as shown
in the time history of figure 5.43. Shown in figure 5.43
is 7'3, which is a typical shear stress in a web. As can
be seen, there is a small amount of higher frequency
response superimposed on the predominant response
frequency. However, the time history exhibits none of
the high-frequency response present in the five-span
beam.

In contrast to the five-span beam example, the
modal convergence of all response quantities consid-
ered for the delta wing is quite good. Shown in fig-
ures 5.44 and 5.45 are modal convergence plots for
selected accelerations and stresses at critical points
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calculated with the mode displacement method. A
converged solution is reached with approximately
20 or less modes for all the response quantities
shown. Convergence is also good for response quan-
tities when the mode acceleration or RWL methods
are used instead of the mode displacement method.
Shown in figure 5.46 is a convergence plot for the
same stresses shown in figure 5.45 but calculated with
RWL vectors.

5.2.2. Sensitivities of Wing Dynamic Response

5.2.2.1. Design variables. The design variable
definitions are the same as those in reference 37 and
are shown in figure 5.47. As can be seen in figure 5.47,
the skin is broken up into 16 regions. In each region
there are three design variables— the thickness of the
0° lamina, the thickness of the 90° lamina, and the
thickness of the £45° lamina. These design variables
will be denoted t} where i denotes the region of the
wing skin, and 6 is either 0°, 90°, or 45° depending
on the lamina orientation. Also shown in figure 5.47
are the 12 design variables controlling the thickness
of the webs. These will be denoted t}, where 7 denotes
the particular web region. )
In calculating sensitivities of various response
quantities, only a small subset of these design vari-
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Figure 5.44. Modal convergence of tip accelerations for delta
wing.

ables were considered. Specifically. derivatives of se-
lected displacement, velocity, acceleration, and stress

quantities were calculated with respect to t%, tég t(l)ﬁ,

16 46 10
tag: tws and ty.

5.2.2.2. Effect of finite difference step size. Com-
pared with the five-span beam example, the system
matrices for the delta wing are larger and have a more
complicated connectivity. Since many of the signif-
icant operations in the transient response analysis
operate directly on thesc matrices, there is consider-
able potential for accumulating round-off error. This
round-off error along with the truncation error in the
finite difference expressions is a concern in sclecting
a step size for a finite difference approximation to a
derivative.

A study was performed to consider the effect of
step size in the forward difference and central differ-
ence methods for the delta wing. Figure 5.48 shows
derivative approximations of the wingtip acceleration
at critical points with respect to selected thickness
design variables as a function of the finite difference
step size used. As seen in the figure, the step size was
varied by factors of 10 from 1077 to 1072, The cen-
tral difference method was not used with the 102
step size because the backward perturbation from
the nominal design would result in negative mem-
ber thickness. One significant observation is that the
acceptable step size range for the forward difference
method is small—approximately 2 decades. A sec-
ond observation is that the behavior of the central
difference method as a function of step size is surpris-
ingly good. It is expected that, for larger step sizes

33



te. >
seC [N
0o} 091 TN 4r
o o)’ 1.22 TR SE
I I
A o,ég) 2.23 r2':'r5. R N\ Skin 6
6x 104 e 1T, 234 :_-_-’::‘_—_—I::“\ 7
P n- [N
(0a0402020,8,0,0,0,0 0 0 0 0 0 0, 0) :3-: 6-1: 9411 AN 8
N I o | N N T RN
|----I-_||_—I|-___I\ 9
U i) 0 g~
R g T ad7hotizhiadish 10
Stress P S P B B B 11
component, -10k
Ib/in?
- Figure 5.47. Design variable definitions for delta wing
example.
220 1 1 1 1

1 1 )
0 20 40 60 80 100 120 140
Number of modes

Figure 5.45. Modal convergence of selected stresses for delta
wing calculated with mode displacement sec Method

method. ® di/dr!f 022  Central difference
w diidr'® 1.94  Central difference
A diildr}8 .51 Central difference
O diildr'$ .22 Forward difference
L, O dijdr'$ 1.94  Forward difference
sec
o ol 091 A diilde{§ .51 Forward difference
16
O oy 122 2% 10°
A olf 223
e 70 234 1
6% 10* .0
0-C000-0000VV00000 dil
B dré
in/sec2 -2
Stress -E E 1n. 3
component,
Ibfin® ~10F -4
i S 07 6 5 4 3 2
10 10 10~ 10 10 10
= Step size, in.
Aﬁﬁﬁ-ﬁ-ﬁ;ﬁ-ﬁ-ﬁ-ﬁ-ﬁﬁ-‘&ﬁ-ﬂ , Figure 5.48. Effect of finite difference step size on accu-
'200 50 100 150 racy of tip displacement derivative approxima-
tions calculated with forward and central dif-
Number of modes ference methods with fixed modes. Delta wing
Figure 5.46. Modal convergence of selected stresses for delta example.

wing calculated with RWL method.

34



(1073), the central difference method results in less
orror than the forward difference method. The unex-
pected superior performance of the central difference
method for the smaller step sizes is probably due to
the symmetry of the difference operator. The round-
off errors that occur with the positive and negative
perturbations tend to cancel each other and thus pro-
duce the better than expected accurate values for the
sensitivities.

The situation is similar for selected stress sensitiv-
ities shown in figure 5.49. Most of the curves for the
forward difference case have a small acceptable step
size ran%e. This is especially obvious for the deriva-
tive do‘}5 / dt})g where 1079 is the apparent choice for
step size. It should also be mentioned that these cal-
culations were performed by using 64-bit arithmetic.
In the five-span beam example, the effect of step size
on displacement derivatives was not as severe even
though, for one case, these were calculated with pre-
dominantly 32-bit arithmetic (fig. 5.30).
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Figure 5.49. Effect of finite difference step size on accuracy
of stress derivative approximations calculated
with forward and central difference methods
with fixed modes. Delta wing example.

The simple approach of selecting a single step size
for use with all response quantities and all design
variables was used here. This approach has the
obvious advantage of simplicity but very questionable

validity for the forward difference method and this
delta wing example. From figure 5.49, there is
significant error in daig/dtég if greater than 107 is
used as the step size. However, if less than 1072 is
used instead, diit,-p/dtéﬁ is in error.

As noted the central difference method improves
the range of acceptable step sizes but at the cost
of an additional analysis for each design variable.
Alternatively, the semianalytical method is partic-
ularly attractive for this delta wing example. The
stiffness matrices of the membrane and shear panel
finite elements are linear functions of the thickness
design variables. Thus, large values of the step size
can be used to effectively eliminate the round-off
errors in generating the derivative approximations
of the stiffness and mass matrices required for the
semianalytical method.

5.2.2.3. Modal convergence of sensitivities. Unlike
the five-span beam example, the modal convergence
of the displacement, velocity, and acceleration deriva-
tives for the delta wing example is good. As an exam-
ple, consider the reference case of acceleration sensi-
tivities calculated with the central difference method
with updated modes shown in figure 5.50. For all
derivative approximations, convergence is achicved
with 32 or less modes. Modal convergence for accel-
eration sensitivities is equally good when the simple
forward difference method with fixed modes is used
as shown in figure 5.51. Figure 5.52 shows the conver-
gence of acceleration sensitivities calculated with the
semianalytical method with RWL vectors instead of
vibration modes. Convergence is also good although
slightly poorer than when modes are used. For ex-
ample, approximately 40 RWL vectors are required
for a converged value of diltip/dt(l)ﬁ compared with
approximately 32 vibration mode shapes.

The modal convergence of stress derivatives, how-
ever, depends dramatically on whether fixed or
updated modes are used in the calculation. The refer-
ence case with the central difference operator uses up-
dated modes, and as shown in figure 5.53, the modal
convergence for all stress sensitivities is very good.
Also the convergence of the stress sensitivities with
the forward difference operator with updated modes
as shown in figure 5.54 is very good with 24 or less
modes yielding a converged solution. However, when
the forward difference operator with fixed modes is
used the modal convergence of the stress sensitivi-
ties is very poor as shown in figure 5.59. For one
derivative approximation, daig /dt8 | the convergence
is fairly good with approximately 24 modes yield-
ing a converged solution. Especially poor conver-
gence is observed for doé6 /dt(l]6 (derivative of stress
in the lamina with respect to its own thickness)
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Figure 5.50. Modal convergence of tip acceleration sensitiv-

ities for delta wing calculated with central dif-
ference method.

where approximately 100 modes are required for
convergence.

Using the semianalytical method with fixed
modes does not improve the modal convergence of
the stress sensitivities. Figure 5.56 shows the modal
convergence of the same stress sensitivities as in the
previous figures but calculated with the semianalyti-
cal method with RWL vectors. The convergence be-
havior for each derivative approximation here is very
similar to that for the forward difference method with
fixed modes.

However, when the basis vectors are assumed
to vary with the design variables and the modified
modal method (see section 4.2.2) is used to approx-
imate d®/dz, the results are significantly improved.
Figure 5.57 shows the modal convergence of the same
stress derivative approximations as shown in pre-
vious figures. Here, the convergence is good with
only around 24 modes required for convergence of
the stress sensitivities.

It was mentioned in chapter 4 that the modal
method for approximating d®/dx produces no im-
provement in the values of transient response sen-
sitivities.  This implies that including the modes
in the modified modal method (see eq. (4.10))
may also not significantly improve the transient re-
sponse sensitivities. This implication was tested
by studying the modal convergence of the stress
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Figure 5.57. Modal convergence of selected stress sensitiv-
ities for delta wing calculated with semiana-
lytical method with d®/dz approximated with
modified modal method.

sensitivities with the use of the modified modal
method but approximating d®/dr with only the
pseudostatic term in equation (4.10). These results
are shown in figure 5.58. Comparing this figure with
figure 5.57 shows that for more than eight modes
the results are nearly identical. It appears that a
cheap, effective approximation to d®/dz in the semi-
analytical formulation can be obtained with only the
pseudostatic term from the modified modal method.

For the five-span beam example, the convergence
of the stresses was substantially improved by includ-
ing the static solution via either the mode accelera-
tion method, the static mode method, or the RWL
method. The RWL method is attractive because it is
cheaper to calculate n, RWL vectors than n, vibra-
tion mode shapes. However, incorporating the modi-
fied modal method in the sensitivity calculations with
RWL vectors would seem to be impossible because
it is derived to calculate the derivatives of vibration
eigenvectors. (See eq. (4.10).) Regardless, it seems
like a worthwhile numerical experiment to try using
RWL vectors along with the pseudostatic correction
term from the modified modal method in the variable
mode, semianalytical formulation. One legitimate ar-
gument for doing this is the well-known observation
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that the basis spanned by the RWL vectors is an ex-
cellent approximation to the basis spanned by the
cigenvectors. The results of this experiment for the
modal convergence of the stresses in the delta wing
are shown in figure 5.59. The convergence here is
quite good also. For small numbers of modes the
convergence is a bit erratic but in all cases the re-
sults are good for more than 32 modes. The benefit
of combining the RWL vectors with the pscudostatic
approximation to d®/dr is that the RWL vectors
add the often important static displacement compo-
nent to the basis, whereas the pseudostatic term adds
components reflecting the change in the design vari-
able to the basis.

As mentioned, the benefit of the mode accelera-
tion method is that it also includes this pseudostatic
term. The semianalytical, mode acceleration, sensi-
tivity method described in chapter 4 was also applied
to this delta wing example. Again, the modal conver-
gence of the stress sensitivities shown in the previous
figures is considered. Figure 5.60 shows the excel-
lent convergence of the stress sensitivities. Clearly,
the mode acceleration method provides the same im-
provement in stress sensitivities as the semianalyti-
cal method with a modified modal approximation to

d®/dzr.
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5.3. Stepped Cantilever Beam Example

The third example considered is a cantilever beam
with five different rectangular cross sections along the
length. (See fig. 5.61.) This example is taken from
reference 38 where its minimum mass design under
a static tip load was considered. The thickness and
width of the beam cross section in each of the five
sections are given in the table insert on figure 5.61
and represent an optimized design from reference 38.
The beam is 200 in. long and, in the nominal case, .
each of the five sections has the same length. The
material properties for the beam are also shown in
figure 5.61.

(@@@@@

Section ONEO®) ©) @ ®
Thickness, in. | 23.5 | 22.0 | 20.0 | 18.0 16.5

Width, in. 1.20 | 1.10 1.00 | 090 | 0.85
Load history Material properties:
) 21.55 E =30 x 10° Ibjin
6. rad 0 3
sec? )55 p=0.3 Ibjin’
e
0 .18 Length = 200 in.
t, sec

Figure 5.61. Stepped cantilever beam with applied rota-
tional acceleration at root.

In most of the analyses, the beam is modeled with
three finite elements per section. The transverse
displacement and rotation are the nodal unknowns
resulting in a total of 30 degrees of freedom for this
case. The effect of different numbers of elements per
section on the lowest 10 beam natural frequencies
(with the beam clamped at the root) is shown in ta-
ble 5.4. In the transient response analyses 0.5 per-
cent of critical damping is included for each mode.

5.3.1. Loading

The loading for this stepped beam example is sig-
nificantly different than for the first two examples.
First, the load results from prescribing the accelera-
tion at the beam root rather than by applying a force
to the beam, and second, the time history as shown
in figure 5.61 is more complicated than the simple
step and ramp histories in the previous examples.
The objective of this particular loading condition is
to simulate the rotation of an appendage attached

39



Table 5.4. Lowest Frequencies for Stepped Cantilever Beam

Frequency, Hz, for
Mode 3 elements 4 elements 5 elements | 6 elements
1 22.67 22.67 22.67 22.67
2 102.67 102.66 102.66 102.65
3 249.72 249.62 249.80 249.55
4 440.57 440.04 439.80 439.67
5 652.50 650.82 650.04 649.62
6 878.48 874.48 872.58 871.54
7 1093.36 1086.15 1082.61 1080.64
8 1296.61 1285.63 1279.94 1276.72
9 1479.81 1465.74 1457.74 1453.09
10 1641.44 1625.75 1615.41 1609.19

to a relatively large mass (e.g., robotic arm). The
acceleration history in figure 5.61 rotates the root of
the beam through 10° in 0.18 sec. After 0.18 sec,
the beam root is motionless while other points in the
beam are undergoing dynamic motion. Beam dis-
placements, velocities, and accelerations in the fol-
lowing sections are with respect to the rotating coor-
dinate system.

This type of applied acceleration can be handled
as an equivalent external force given as

p = —Mryg(t) (5.1)

where r is a vector describing the linear rigid body
rotation of the beam about its root and g(t) is the
prescribed acceleration history given in figure 5.61.
It should be noted that the applied force in this case
depends on the system mass matrix; this must be
considered in the sensitivity calculations.

5.3.2. Stepped Beam Dynamic Response

The transient behavior of the beam is strongly
affected by the period of the loading. From table 5.4,
the period of the lowest vibration mode is 0.044 sec,
whereas the period of the square-wave loading is
0.18 sec. From figure 5.62, it can be seen that in the
time history of the beam tip displacement, this first
mode predominates, and almost exactly four cycles
occur during the period of the loading. After the
load is removed, the displacement response at the
tip is relatively small. The bending stress at the
root has a time history similar to that of the tip
displacement as can be seen in figure 5.63 but with
slightly more participation from higher frequency
modes. As expected, the acceleration time history
for the tip as shown in figure 5.64 is considerably
- more jagged; this indicates the participation of many
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higher frequency modes. This behavior is largely due
to the abrupt changes in loading in the square-wave
input. Significant accelerations exist at the tip after
the loading is removed.

Time, sec

Figure 5.62. Time history of tip displacement for stepped
cantilever beam.
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Figure 5.63. Time history of root stress for stepped can-

tilever beam.
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Figure 5.64. Time history of tip acceleration for stepped
cantilever beam.



5.3.2.1. Modal convergence. The first convergence
study considered the effect of the number of finite
elements per section on the convergence of the critical
point displacements, velocities, and accelerations at
the beam tip and stresses at the root. For all these
quantities, the convergence is excellent. For example,
the peak acceleration changes by less than 1 percent
when the number of finite elements per section is
varied from 3 to 8. Then, for the beam modeled
with three elements per section, the effect of the
number of modes used in the analysis was considered.
Generally the convergence was better than expected.
Figure 5.65 shows the modal convergence of the
tip acceleration at two different critical time points
calculated with the mode displacement method. The
values are essentially converged with five modes.
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Figure 5.65. Modal convergence of critical point tip acceler-
ations for stepped cantilever beam. Mode dis-
placement method.

The modal convergence of the stress at the beam
root is also rapid. Figure 5.66 shows the convergence
of the root stress at two critical points calculated
with the mode displacement method. No more than
five modes are required for convergence. It was
mentioned that there is a strong static component
in the beam response during the period while the
load is applied. Usually this requires the use of
the mode acceleration method or RWL vectors for
acceptable convergence of the stresses. Evidently the
lowest vibration mode is close enough to the static

displacement shape for this cantilever beam that the
mode displacement method gives good values for the
stresses.

5.3.2.9. Use of RWL wvectors in analysis. In
the stepped beam and delta wing examples, the con-
vergence with RWL vectors in analysis and sensitiv-
ity calculations was generally as good or better than
with vibration modes. The modal convergence in the
stepped cantilever beam example when RWL vectors
are used is very good also as seen in figure 5.67 for
accelerations.

As can be seen in figure 5.67, the largest number
of RWL vectors used in the analysis is 20. In
the convergence studies considering vibration modes
(e.g., fig. 5.65), the full set of 30 modes was used. A
complete set of RWL vectors could not be generated
for this example because of ill-conditioning inherent
in the numerical process (eqs. (2.26) through (2.29)).
As additional RWL vectors are generated, round-
off errors cause the vectors to become less and less
orthogonal. Eventually, the vectors become lincarly
dependent; this results in a singular reduced system.
In most practical applications of this RWL method,
this singularity problem would not occur because the
number of RWL vectors generated would be much
smaller than the total number of degrees of freedom.

5.3.3. Sensitivities of Stepped Beam Dynamic
Response

5.8.3.1. Design variables. Two different classes of
design variables are considered in this example. The
first class is the set of beam thicknesses in each of
the five sections. They are denoted h;, where i is the
section number from figure 5.61. These are similar to
thickness design variables considered in the five-span
beam and delta wing examples. Sensitivity results
are presented in the next sections with hy and hg
considered from this set.

The second class of design variables is the set of
lengths of the five sections in the beam. The beam
length is fixed at 200 in.; thus, only four design vari-
ables determine the lengths of the five sections. The
four design variables are denoted l;, where [; is the
distance from the beam root to the end of the ith sec-
tion. Sensitivity results are presented in the next sec-
tions with /; and l4 considered from this set. In the
structural optimization field this type of design vari-
able is often referred to as a “shape” design variable
and is studied separately from member thickness-
type design variables. A recent study (ref. 39) con-
sidered the calculation of static response sensitivi-
ties with respect to shape design variables with the
semianalytical method. It was found that numeri-
cal difficulties in the semianalytical method resulted
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in very large errors in sensitivities. This difficulty is
addressed in sections 5.3.3.2 and 5.3.3.3 for the tran-
sient case.
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Figure 5.68. Effect of finite difference step size on accu-
racy of tip displacement derivatives with re-
spect to thickness design variables for stepped
cantilever beam. Forward and central differ-
ence operators.

5.3.3.2. Effect of finite difference step size.
It is shown in this section that, practically, the
selection of finite difference step size is not a con-
cern for this stepped beam example. A series of
studies was performed to consider the effect of step
size on both thickness and length sensitivities calcu-
lated with finite difference and semianalytical meth-
ods. The finite element model with three elements
per section was used and all 30 modes were included.
Figure 5.68 presents approximate derivatives of tip
displacement with respect to section thicknesses cal-
culated with overall forward and central difference
methods. A key point to be made is that both meth-
ods give excellent results for approximately an 8-
decade step size range. For the large step size of
1071 in., the central difference operator generally
gives better results than the forward difference oper-
ator as would be expected. The results are nearly as
good for sensitivities of the root stress with respect
to the section thicknesses as shown in figure 5.69.



Compared with figure 5.68, there is slightly more er-
ror for the smallest and largest step sizes but the
sensitivities are still accurate over a very broad range
of step sizes. If sensitivities of stresses with respect
to the length design variables are considered, the re-
sults are also very good. Figure 5.70 shows sensitivi-
ties calculated with the forward and central difference
methods. Again there is a broad range of step sizes
that provide accurate sensitivities. For the smaller
step sizes the results are gencrally less accurate than
in figure 5.69, but for the 10~ step sizes they are
more accurate.
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Figure 5.69. Effect of finite difference step size on accu-

racy of root stress derivatives with respect
to thickness design variables for stepped can-
tilever beam. Forward and central difference

operators.

It has been mentioned that severe numerical diffi-
culties were uncovered in reference 39 when sensitiv-
ities of static response were calculated with respect
to shape design variables. The result of this numer-
ical ill-conditioning could be scen by calculating the
sensitivities with different finite difference step sizes
used for approximating the derivatives of the stiff-
ness matrix. For very small step sizes, the error in
the sensitivities is due to round-off. For the larger
step sizes, however, the errors in sensitivities were
much larger than those due to truncation of the fi-
nite difference operator and were found to be caused

by basic ill-conditioning in solving the semianalytical
equations.

This same phenomenon OCcurs when sensitivi-
ties are calculated with a semianalytical method
for the transient case. Figure 5.71 shows approxi-
mate derivatives of root stress with respect to the
length design variables calculated with the forward
difference and semianalytical methods. Again, all
30 modes are used in the analyses. For the smaller
step sizes, the accuracy is significantly better for the
semianalytical method than for the overall forward
difference method. For the 10~ 2 step size, how-
ever, the results from the forward difference method
are excellent, whereas several of the sensitivities cal-
culated with the semianalytical method exhibit ex-
tremely large errors. This result is completely con-
sistent with that in reference 39. Although in this
example, there is a large range of step sizes where ac-
curate sensitivities can be obtained, in general, this
would not be the case. Especially as the problem be-
comes larger it is desirable to use larger step sizes in a
semianalytical method, but this is severely restricted
for shape design variables by the type of error shown
in figure 5.71.

5.939.9. Modal convergence of sensitivities. Most
of the sensitivities exhibit the same good modal con-
vergence as the response quantities. For example,
the modal convergence of approximate derivatives of
tip displacement with respect to h, and hj at differ-
ent critical points is shown in figure 5.72. The sen-
sitivities were calculated with the central difference
method with updated modes and, as can be seen, the
convergence is excellent. The convergence of tip ac-
celeration derivative approximations is not as good
as the displacement derivative approximations but 1s
still acceptable as seen in figure 5.73. Again, these
sensitivities are with respect to hj and hs and are
calculated with the central difference method with
updated modes.

Convergence is also good when sensitivities with
respect to the length design variables are considered.
Figure 5.74 shows the modal convergence of approxi-
mate derivatives of acceleration with respect to I{ and
I4 calculated with the central difference method. A
step size of 105 was used to avoid the problem shown
in figure 5.71. As can be seen in figure 5.74, conver-
gence is achieved with approximately 10 modes.

The modal convergence of stress sensitivities is
similar to that for the delta wing example. When
updated modes are used with an overall finite dif-
ference method, the convergence is excellent. An
example of this is shown in figure 5.75 where ap-
proximate derivatives of the root stress with respect
to hy and hg calculated with the forward difference
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Figure 5.70. Effect of finite difference step size on accuracy
of approximate root stress derivatives with re-
spect to length design variables for stepped can-
tilever beam. Forward and central difference
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of approximate root stress derivatives with re-
spect to length design variables for stepped can-
tilever beam. Overall forward difference and
semianalytical methods.

sec
O duyp/dh 0.07
O dugpldh, .16
A dugpldhs .02
® dup/dhs 11
B duyp/dhs .16
.03[- 0—0—0—0—0—0
021
o0——00——0—0—0
du[ip Ol
dh;
in/in, ok
*—o—o—o—o—o
-0l ——a—=——a—=
S—HD—NH—H—©h—A
02 1 1 i J
0 10 20 30 40
Number of modes
Figure 5.72. Modal convergence of approximate derivatives
of tip displacement with respect to thickness
design variables for stepped cantilever beam.
Mode displacement method; central difference
operator.
t.
sec
(o] diilip/dhI 0.09
O diiﬁp/dhl 12
A a’iitip/dhI 13
® dz'i"p/dh5 .09
[ | dfi[ip/dh5 12
30()Or
o0—0——0——0—0—0
2000
N—t—D— A —A—A
diip 1000l W E—S—=—a
dh,
infsec2  OF
in.
-1000f
*r——0——o—o
-2000}
O0—0——]40—0—0—0
-3000 1 | 1 )
0 10 20 30 40
Number of modes
Figure 5.73. Modal convergence of approximate derivatives

of tip acceleration with respect to thickness
design variables for stepped cantilever beam.
Mode displacement method; central difference
operator.



o

sec
O diiy/dl,  0.09
O diiy,/dl, 12
A diigdly 1
° dil'“p/dl_,i 12
100~
50
dil
dr -’
2 e—e—o—0—0o—0
in/sec <
in. A—N AN —D—D——A
S0 p—o—0o0——O——0—0
-100 1 1 1 —]
0 10 20 30 40

Number of modes

Figure 5.74. Modal convergence of approximate derivatives
of tip acceleration with respect to length de-
sign variables for stepped cantilever beam.
Mode displacement method; central ditference
operator.

operator are shown. However, if fixed modes are used
in a finite difference procedure, the modal conver-
gence is much worse. Figure 5.76 shows an example
of this for the same sensitivities as in figure 5.75.
Also, if sensitivities of the root stress with respect
to the length design variables (i1, [4) are considered,
the modal convergence is very poor. An example of
this poor convergence is shown in figure 5.77. The
convergence is similarly bad if the fixed-mode semi-
analytical method is used instead of a finite difference
method. Figure 5.78 shows the poor modal conver-
gence of the same sensitivities as figure 5.77 but cal-
culated with the fixed-mode, semianalytical method.

For the delta wing example, remedies for the
poor convergence of stress sensitivities in the semi-
analytical method were based on approximating the
mode shape derivatives d®/dz. These semianalyt-
ical methods including approximations for d®/dx
were also applied to this stepped beam exam-
ple.  First d®/dz was approximated with the
modified modal method. The modal convergence
of the stress sensitivities is now excellent as can
be seen in figure 5.79. The degree of improve-
ment can best be appreciated by comparing fig-
ures 5.78 and 5.79 and noting that the range
of the ordinate in figure 5.78 is much broader
than in figure 5.79. Using only the first pseudo-
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Figure 5.75. Modal convergence of approximate derivatives

of root stress with respect to thickness design
variables for stepped cantilever beam. Mode
displacement method; forward difference oper-
ator; updated modes.

static term from the modified modal method as an
approximation to d®/dr was also tried. As can
be seen in figure 5.80, the convergence is adequate
though not quite as good as when the complete mod-
ified modal method is used.

Just as in the delta wing example, a case was also
considered where RWL vectors were used instead of
vibration modes but their derivatives were computed
by the modified modal method (version with pseudo-
static term plus modes). Again, somewhat surpris-
ingly, the modal convergence of the stress sensitivities
is good as seen in figure 5.81.

The semianalytical mode acceleration method
was also tried as a remedy for the poor convergence
of the stress sensitivities. Again, the very poor con-
vergence is eliminated as can be seen in figure 5.82.

5.4. Summary

A number of different methods for calculating sen-
sitivities of transient response quantities have been
exercised on three example problems: a five-span
beam, a composite aircraft wing, and a variable-
cross-section beam. Two of the methods are over-
all finite difference methods where the analysis is re-
peated for perturbed designs. The other methods
are termed semianalytical methods because they in-
volve direct, analytical differentiation of the equa-
tions of motion with finite difference approximations
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of the coefficient matrices. All the methods use basis
vectors to reduce the dimensionality of the problem.
Accordingly, the convergence of both the transient
response quantities and their sensitivities as a func-
tion of number of basis vectors was a key concern in
this chapter.

In the delta wing and stepped cantilever beam
examples, the convergence of the response quanti-
ties was consistently very good. However, this was
not true with the five-span beam. With the five-
span beam under a concentrated end moment and
ramp time history, the convergence of displacements
and velocities was adequate. However, the conver-
gence of accelerations was poor. The convergence
of stress resultants for this example depended on
how they were calculated. When the mode displace-
ment method was used, the convergence was quite
poor. However, when the mode acceleration method,
the Ritz-Wilson-Lanczos vector method, or the static
mode method was used, the convergence was good.
In cases where convergence was poor for the five-span
beam, the addition of modal or discrete damping im-
proved the convergence somewhat. However, it did
not eliminate the convergence problems.

The modal convergence of the sensitivities in the
three examples is consistent with the convergence of
the response quantities themselves. For the delta
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wing and stepped cantilever beam examples, the
convergence of sensitivities was generally good. For
the five-span beam example, the convergence of dis-
placement sensitivities was adequate but the conver-
gence of velocities, accelerations, and stress resul-
tants was generally poor. This poor convergence was
observed for all the sensitivity calculation methods.
Furthermore, it appears to be associated with the
structure and loading because no improvement was
observed as the number of finite elements per span
was increased.

In certain cases poor convergence of sensitivities
was also observed for the delta wing and stepped can-
tilever beam examples. When sensitivities of stresses
were calculated with the fixed-mode overall finite
difference methods or the fixed-mode semianalytical
methods, the convergence was very poor. In large
problems, however, updating the vibration modes in
the overall finite difference methods or rigorously cal-
culating derivatives of the mode shapes is very ex-
pensive. The mode acceleration version of the semi-
analytical method and the semianalytical method
with mode shapes approximated with the modified
modal method were devised to alleviate this poor
convergence with lower computational cost. When
both methods are applied to delta wing and stepped
cantilever beam examples, the modal convergence of
sensitivities is excellent.

All the sensitivity calculation methods considered
herein rely on finite difference operators. Thus step
size selection is an important concern. The Sys-
tem stiffness and mass matrices are linear functions
of many of the design variables in the three exam-
ple problems. This allowed large step sizes to be
used in the semianalytical methods to minimize the
round-off errors and produce accurate derivatives of
the stiffness and mass matrices. Also there is less
opportunity for round-off error in calculating finite
difference derivatives of just the coefficient matrices
compared with finite difference derivatives of the
overall response quantities. For these reasons, the
semianalytical methods were consistently less sensi-
tive to finite difference step size than the overall finite
difference methods.
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Chapter 6

Computational Costs

A consideration of the computational costs is es-
sential for evaluating any numerical method. This is
especially difficult in large-scale, finite-element-based
procedures because there is often considerable “over-
head” required in the practical implementation of a
given numerical method. For example, most finite el-
ement codes require only a small portion of a system
matrix to be resident in central memory during fac-
torization at any given time. The other portions of
the matrix are read from disk and the factored por-
tions are written to disk as required. A similar situa-
tion can exist on virtual memory machines where the
disk operations are transparent to the implementor.
In these cases, the computer resources required are
very implementation dependent.

An approach that is common in the formal study
of numerical methods is to evaluate the computa-
tional cost by counting the number of floating point
operations. There are some pitfalls to this approach.
Sometimes, even for large problems, because of the
required overhead it is impossible to achieve a prac-
tical implementation that will execute as fast as the
predictions from the operation count. At other times,
especially on vector machines, it is possible for a
method with a higher operation count to be faster
than a method with a lower operation count.

Nevertheless, this approach is used here, primar-
ily to indicate the major trends in the costs of the
methods, not to make fine distinctions between them.
Following common practice, a floating point opera-
tion (or “flop”) is defined as the combination of a
floating point multiply, add, and associated array in-
dexing. In the rest of this chapter a floating point
operation is often referred to simply as an operation.

6.1. Costs of Basic Matrix Manipulations

Multiplication of full matrices occurs in several
places in the transient response and sensitivity meth-
ods. The approximate number of floating point op-
erations required to multiply a full I x m matrix and
a m X n matrix is given as

Comul = LM (6.1)

Solution of the reduced eigenproblem (egs. (2.23))
is important in solving the system eigenproblem with
subspace iteration (egs. (2.3)) and in uncoupling the
reduced system when basis vectors other than the
cigenvectors are used. In both cases, it i1s necessary
to solve a full, generalized eigenproblem for all n,
cigenvalues and cigenvectors. Since eigenvalue solu-
tion techniques are inherently iterative, the number
of operations required for a converged solution can
only be estimated. Reference 15 estimates the num-
ber of operations for the complete solution of a gen-
eralized eigenproblem with the Jacobi method as

Creig = 1807 + 36n; (6.2)

Other techniques for solving this eigenproblem may
have a significantly different cost. However, it is
shown that the cost of this eigensolution is small
relative to other tasks in the sensitivity calculations.

6.2. Costs of System Matrix Manipulations

For the purpose of considering the computational
costs of operations on system matrices (e.g., K,
M), these matrices are considered to be stored in
a banded form. In a banded form, only matrix ele-
ments located near the diagonal are stored; the ma-
trix elements outside this “bandwidth” of the matrix
are zero and are not stored or considered in oper-
ations. Finite element problems yielding a stiffness
matrix with a constant bandwidth are rarely encoun-
tered in practice so most finite element codes use
more sophisticated and efficient schemes for storing
system matrices. However, having a single, easily
understood number to characterize the sparsity of
a system matrix (the bandwidth) is convenient in
approximating computational costs. Although few
finite element problems have precisely a constant
bandwidth, this assumption is accurate enough in
many cases to get reasonable estimates for a relative
number of operations in a numerical procedure.

From reference 40 the cost in number of opera-
tions of factoring a banded system matrix of order
ng is given as

o ! &gt 3
bfac = 55(5+ 3)ng — 5 B8 - 55 (6.3)
where 3 is one half the bandwidth (excluding the
diagonal). Also from reference 40, the cost of a
single solution of a banded system, given the factored
matrix, is given as

Chsol = 208+ 1)ng — B(B+ 1) (6.4)
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The cost of multiplying a banded system matrix and
a single vector is given as

Cbmul = (2ﬂ + 1)”9 (6'5)

6.3. Cost of Basis Reduction

The process of reducing the degrees of freedom
from ny to n, requires the matrix triple product op-
erations shown in equations (2.6), (2.7), and (2.8).
Since this process is used in all the sensitivity meth-
ods, the cost is considered separately here. In per-
forming this operation, n, system vectors are multi-
plied by a system matrix. Then nr(nr +1)/2 inner
products (for a symmetric system matrix) between
system vectors are performed. The total number of
required floating point operations is

ngny(ny + 1)

5 (6.6)

Cred = nrChmy +

6.4. Cost of System Eigensolution

The cost of solving the generalized vibration
eigenvalue problem is even more difficult to estimate
than the cost of solving the reduced eigenproblem.
The numerical techniques vary widely among differ-
ent analysis codes. Furthermore, a technique used
for one problem might be totally inappropriate when
applied to a different problem. Nevertheless, some
assumptions are made here that will hopefully lead
to a reasonable estimate of computational costs for a
fairly broad class of problems.

First, it is assumed that the eigenvalue problem
is solved with a subspace iteration technique with
shifts (for example, ref. 15). In recent years, software
based on this approach has become common. Also,
the eigensolver, E4, in the EAL software used in this
study (ref. 23) is based on this approach. It is also
necessary to make assumptions about the number of
vectors used in the subspace and the number of itera-
tions at a given shift point required to converge some
subset of these vectors to eigenvectors. The follow-
ing numbers were used for these quantities with the
realization that they may be optimum for only a few
problems. Also, it is assumed that the eigensolution
is being performed for a slightly perturbed model and
the eigenvectors from the initial model are available
as the initial subspace. At each shift point nys = 16
vectors are included in the subspace. After Ny = 2
iterations, n¢ss = 8 of these vectors have converged
to eigenvectors.

50

The number of shifts or number of factorizations
required is approximately

ny

Thift = +1 (67)

Tess

At each iteration, the inverse power operation re-
quires a matrix product between M and Nitgs Vec-
tors followed by nyys solutions of the system equations
based on the current factored K. The basis reduction
operation for both K and M requires nygs(niss + 1)
system vector inner products. Next, the eigen-
problem of reduced order Ntss must be solved. This
cost is given in equation (6.2) with n, replaced by
niss- Finally, the updated set of approximate system
eigenvectors must be formed as a linear combination
of the current approximation. This requires nfss ng
operations. The approximate cost of solving the sys-
tem eigenproblem for n, modes and frequencies can
be written as

Ceig = nshiftcbfac T Mghift it [ntsscbmul
+ Nss Chgol + ntss(ntss + l)ng

+ 18nd + 36nk, + n2, ngl (6.8)

6.5. Cost of Generating RWL Vectors

As has been demonstrated, RWL vectors are an
attractive alternative to vibration mode shapes for
basis reduction in transient response analysis. It
has been mentioned previously that generation of the
RWL vectors is considerably cheaper than vibration
modes. An estimate of this cost in number of floating
point operations is derived here.

First, a factorization of the system K is required.
The system equations are solved n, times based on
the factored K. The generation of right-hand-side
vectors requires n, — 1 matrix products between M
and a vector. Another key step in the process is
the Gram-Schmidt orthogonalization as indicated in
equation (2.27). For all vectors, this requires n, — 1
multiplications of a vector by M and ny(ny —1)/2
vector inner products. The scaling of each vector
requires n, vector inner products and ny divisions of
a system vector by a scalar. Writing the total number
of floating point operations in expanded form yields

CRWL = Chfac + 1-Chsol + 2(nr — 1)Chyu

-1
+ "—’"(";h)ng + 2n,mg (6.9)



6.6. Cost of Model Generation

The generation of the finite element model re-
quires processing of the input, forming elemental ma-
trices. and forming global system matrices. Most
of the sensitivity calculation methods require gen-
eration of a single perturbed model for each design
variable. The central difference method, however, re-
quires the generation of two perturbed models. Thus
to compare the central difference method with the
other methods, an estimate of the model generation
cost is required. This cost is difficult to calculate
in general. For the purposes herein this cost is es-
timated empirically with EAL by observing the exe-
cution time for model generation relative to matrix
multiplication for a number of models. From these
experiments it was observed that the predominant
element type in the model substantially affects the
cost. That is, forming the element matrices in a
model composed of three-dimensional solid elements
is much more costly than in a model composed of rod
clements. The estimate for model generation cost
used here,

Cruodel = 10081y (6.10)

roughly approximates the cost for a model with
two-dimensional, plate-type elements in EAL but
would be significantly in error for predominantly one-
dimensional or three-dimensional models.

6.7. Cost of Integration of Reduced System

The basic operation for integrating the reduced
system is shown in equation (2.30). The two ma-
trix multiplications shown in equation (2.30) are per-
formed at every time step. If equations (2.5) are cou-
pled, W;; and Njj; are full and the explicit matrix
multiplication must be performed. In this case, the
total number of floating point operations for integra-
tion of the system is given as

Cinte = 8”2”1 (6.11)
where n; is the number of time steps in the analy-
sis. If equations (2.5) are not coupled, W and Ny
are diagonal, and this fact can be exploited to sub-
stantially reduce the cost of integrating the system.
The number of floating point operations in this case
is given as

Cinte = 8nrnt (6.12)

When the number of equations in the reduced sys-
tem n, is large, the difference between Cipte in
equations (6.11) and (6.12) is very large. For the
comparisons of sensitivity methods in this chapter,
equation (6.12) is used to estimate the integration

cost. When vectors other than vibration modes are
used or vibration modes for an initial model are used
with a perturbed model. the equations are first un-
coupled by solving the reduced-order eigenproblem.

6.8. Cost of Back Transformation for
Physical Response Quantities

After the reduced equations have been solved, it
is necessary to recover the physical displacements,
velocities, accelerations, and stresses (or stress resul-
tants) of interest. Usually the quantities of interest
are only a subset of all possible quantities available
from the finite element model. In the critical point
constraint formulation described in chapter 3 it is
necessary to recover the physical response quantities
only at the critical times. That is, the back trans-
formation is performed at only 5 to 20 critical points
rather than at thousands of time steps. The cost of
the basic back transformation operation is

Chack = NpTrlte (6.13)
where ny is the number of physical quantities being
recovered from the modal values and n. is the number
of critical points. The costs of back transformation
in the specific sensitivity methods will be expressed
as a multiple of this basic cost.

6.9. Cost of Sensitivity Calculation
Methods

Because all the sensitivity calculation methods
require the dynamic analysis of the initial model, this
component of the cost can be neglected in comparing
the different methods. In addition, in all the methods
the basic operations are repeated for each design
variable so the costs estimated below are per design
variable. Also, to simplify the cost analysis, the
models are assumed to be undamped so that any
operations dealing with modal damping or system
damping matrices are not included.

6.9.1. Finite Difference Methods

Both forward and central difference methods for
calculating sensitivities were considered in chapter 4.
In the central difference method, the basic operations
of the forward difference method are performed twice;
therefore the cost is approximately twice that of the
forward difference method. Costs are derived here
for the forward difference method. In both finite
difference methods, the basis vectors can be the
same as for the original model (fixed) or recalculated
for the perturbed model (updated). The cost with
updated modes presented herein is hased on using
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natural vibration modes. An alternative of using
RWL vectors is considered separately.

The first step in the forward difference method is
evaluation of the perturbed model. If the modes are
being updated, the eigenproblem is solved. Other-
wise, the original modes are used to reduce the basis,
and the reduced-order eigenproblem is solved to un-
couple the transient equations. The uncoupled equa-
tions for the perturbed system are then integrated
and the n, physical quantities calculated at the Ne
critical time points. The cost of the actual difference
operation is very small and is therefore neglected.
For the fixed-mode case, the total cost is

2
Cfdﬁx = Chodel + 2Cred + Creig + LRy
+ Cinte + Cback (6'14)

For the updated mode case, the total cost is

Cfdupd = Cmode] + Ceig + Cinte + Chack (6'15)

6.9.2. Semianalytical Method With Fized Modes

The semianalytical method begins by evaluating
the perturbed model. Then dM/dz and dK/dz are
formed using a forward difference operator. Each
derivative requires about fng operations. Then
the basis reduction operation is applied to both
derivative matrices. Formation of the right-hand-
side pseudo load (eqs. (4.6)) is a fairly costly op-
eration and the two matrix products (dM/dx)§ and
(dK/dx)q require about n?n; operations each. Fi-
nally, the uncoupled equations are integrated and
the physical sensitivities recovered. For the purposes
of cost estimation, a single quantity np is used as
the total number of required physical sensitivities.
In the semianalytical methods, however, the specific
procedure for recovering the sensitivities depends on
whether the quantity is a displacement, velocity, ac-
celeration, or stress sensitivity. In estimating the
costs of this back transformation operation these dif-
ferences are ignored. One Justification for this ap-
proach is that the cost of back transformation is usu-
ally small relative to other costs in the sensitivity
calculation. In this fixed-mode, semianalytical
method, approximately the same number of opera-
tions is required for the recovery of physical sensitiv-
ities as in the finite difference methods. The total
number of floating point operations can be written
as

Cafix = Cmodel + 20ng + 2C,eq + 2n2nt
+ Cinte + Chack (616)
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6.9.3. Semianalytical Method With Approximate
d®/dx

Just as in the fixed-mode, semianalytical method,
evaluating the perturbed model and forming dM /dx
and dK/dzx is the first step. The next step is using
the modified modal method to approximate d®/dzr.

The procedure for the modified modal method is
given in equations (4.9), (4.10), (4.11), and (4.12).
The calculation of the n, pseudostatic contributions
requires the formation of n, right-hand-side vectors
and ny solutions of the system equations. The forma-
tion of the A jk participation factors requires approx-
Imately n, system matrix additions ‘plus the equiv-
alent of a triple product basis reduction operation.
Forming the linear combination of pseudostatic term
and eigenvectors requires nrng operations. The total
cost in number of floating point operations for the
modified modal method is

Crumod = 2nrng + 1y Chsol + nrﬁng

+ Cred + 11y (6.17)

Given d®/dz, the derivatives of the reduced Sys-
tem matrices can be formed. For both dM/dz and
dK/dz, two triple product, basis reductions plus
nr vector inner products (for the d®7/dzM® term
since M@ is already available) are required as shown
in equation (4.8). The right-hand-side formation and
integration of the reduced sensitivity equations are
identical to the fixed-mode semianalytical method.
Because of the nonzero d® /dz, recovery of the physi-
cal sensitivities is more complicated than in the fixed-
mode case. Approximately twice the number of op-
erations is required in the back transformation since
both @ and d®/dr terms must be considered as
shown in equations (4.13). The total cost for the
variable-mode semianalytical method is

Csaupd = Cmodel + Zﬁng + Cmmod + 4C’red + 2nrng

+2n2n4 + Cinge + 2Ch 0k (6.18)

6.9.4. Semianalytical Mode Acceleration Method

Since d§/dz and dq/dz are obtained from the
fixed-mode semianalytical method, the operations in
equation (6.16) (except Cypq) are required in apply-
ing the mode acceleration method. The back trans-
formation operations for displacement and stress
sensitivities are more complicated as seen in equa-
tions (4.19) and (4.20). The cost of forming the co-
efficients in equations (4.19) is dominated by multi-
plying a vector by a system matrix, adding n, + 1



system vectors, and solving the system equations for
n, + 1 pseudostatic vectors. Again, the assumption
is made that the model is undamped so that the C
and the dC/dz terms in equations (4.19) are zero.

The back transformation procedure for displace-
ment and stress sensitivities involves application of
equations (4.19) and (4.20) for each quantity at
the critical times. Velocity and acceleration terms
are calculated as in the fixed mode, semianalytical
method. Again, with only a single quantity for the
number of back transformed quantities np, the cost
can only be roughly estimated as 4Cp,ck- The to-
tal cost for the semianalytical, mode acceleration
method can then then be written as

Csamace = Crmodel + 2019 + 2C1eq + QTL%Tlt
+ Cymul + (nr + 1)”9 + (ny + 1)Chsol

+ Cint‘e + 4Cback (6'19)

6.10. Analysis of Cost For Various Models

With the expressions for computational cost in
the previous sections, it is now possible to evaluate
the use of the sensitivity calculation methods on var-
ious examples. The first three examples are those
considered in chapter 5. These three examples, how-
ever, are all rather small compared with the class
of problems envisioned for the production use of the
sensitivity methods. Accordingly, two other hypo-
thetical problems with a larger number of degrees of
freedom have been included.

The key parameters from the five problems re-
quired for the cost analysis are shown in table 6.1.
Several points should be made about these parame-
ters. The two beam problems have a small number
of degrees of freedom and a very small bandwidth
and, as a result, a small cost for system matrix fac-
torization. This is unusual in finite element anal-
ysis. Medium model A and large model B repre-
sent a typical medium size linear dynamics problem
and a rather large ambitious problem, respectively.
Medium model A also is complicated by the fact
that 100 vectors are assumed to be required in the
transient analysis. In all five examples, a relatively
large number of time steps are used in the transient
analysis.

6.10.1. Cost of Computational Subtasks

Table 6.2 shows the number of floating point op-
erations required for different computational tasks
for the five example problems. Examining the costs

for these subtasks gives some clues to the costs of dif-
ferent sensitivity calculation methods. For the first
three examples, the cost of system matrix factoriza-
tion is low. For the two larger hypothetical examples
the factorization cost is much higher relative to that
of other tasks. In the first three examples, the cost of
integrating the reduced equations is substantial even
though the equations are uncoupled. For models A
and B, the integration cost is 1 to 2 orders of mag-
nitude less than the other subtask costs in table 6.2.
Consistently, in all five examples, the cost of perform-
ing the triple product basis reduction is high. For the
three small problems, this cost is significantly higher
than the factorization cost. For medium model A,
this cost is also much higher than the factorization
cost, but this is primarily due to the requirement of
100 vectors in the reduced system. Even in model B,
however, the basis reduction cost is only a little less
than one half the factorization cost. One conclusion
is that the number of vectors in the reduced system
substantially affects the cost of the analysis even if
the vectors are not updated for the current model.

Table 6.1. Parameters Governing Computational Costs

Model ng 3 ny ng np ne
Five-span beam 32 3 18 6 000 25 10
Delta wing 264 30 20 30000 13 5
Stepped beam 32 3 20 30000 4 5
Medium model A 3000 100 100 10000 50 10
Large model B 12000 | 300 30 20000 | 200 | 10

The use of RWL vectors in the transient and sen-
sitivity analyses was considered in chapter 5. Here,
the cost of generating RWL vectors compared with
vibration modes is considered. Table 6.2 shows the
cost of system matrix eigensolution Cejy and RWL
vector generation Crwi, for the five example prob-
lems. In every case the generation of RWL vectors is
cheaper than the eigensolution. In the beam exam-
ples, Crwi, is more than an order of magnitude less
than Cejg. This results from the unusual situation in
which the number of required eigenvectors is nearly
the same as the total number of degrees of freedom.
In this case, the solution of the reduced eigenproblem
artificially raises the cost of the system eigensolution.
The other three examples show Cejg to be three or
four times Crwr. This is probably a much more ac-
curate estimate of the cost savings obtained by using
RWL vectors instead of eigenvectors.
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Table 6.2. Number of Operations for Selected
Computational Subtasks

Model Chfac Cred C«:ig CrwL Cinte
Five-span beam 2.7 x 102{9.5 x 10%[6.6 x 10°[1.8 x 10%{8.6 x 10°
Delta wing 1.2 x 10°(3.8 x 10%]4.8 x 108]1.1 x 108]4.8 x 106
Stepped beam  |2.7 x 10%]1.1 x 10%[6.6 x 10%(2.1 x 10%]4.8 x 108
Medium model A 1.5 x 107|7.5 x 107]7.4 x 108|2.1 x 108{8.0 x 105
Large model B |5.4 x 108|2.2 x 108/4.0 x 10%[1.2 x 10%]4.8 x 10°

6.10.2. Comparison of Costs for Five Sensitivity
Methods

The primary objective of this chapter is to com-
pare the costs in number of floating point operations
of the sensitivity methods. This is summarized for
five sensitivity methods, for the five examples in ta-
ble 6.3. It is believed that these five sensitivity meth-
ods are all practical alternatives for large-order prob-
lems. This belief is substantiated by the fact that for
all five examples the difference among the five costs
is less than 1 order of magnitude.

Table 6.3. Overall Operation Costs for Five Sensitivity Methods

Model Crafix vafdupd Cafix Csaupd Ciamace
Five-span beam [1.0 x 106[1.5 x 10%}4.8 x 106[4.8 x 106]4.8 x 108
Delta wing 6.5 x 105(1.0 x 107{3.0 x 107]3.2 x 107(3.1 x 107
Stepped beam 5.0 x 10%(5.5 x 106]2.9 x 107]2.9 x 107(2.9 x 107
Medium model A |2.4 x 108(7.8 x 108(3.9 x 108/6.8 x 108]4.5 x 108
Large model B |8.2 % 10844 x 10%(8.5 x 108|1.7 x 10%1.1 x 10°

The forward difference method with fixed modes
is consistently the cheapest method. However, this
low computational cost must be weighted against
the pitfalls of the method discussed in chapter 5.
The cost of a fixed-mode central difference method
which is approximately twice the forward difference
cost would also be quite competitive with the other
methods and would lessen the sensitivity to finite
difference step size. For the two larger problems,
the forward difference method with updated modes
is relatively expensive and an updated-mode central
difference method would be extremely expensive for
larger problems.

In the three smaller problems the semianalytical
methods require significantly more operations than
the finite difference methods. This is primarily be-
cause the larger number of time steps makes the
calculation of the right-hand-side pseudo load rela-
tively large. For the two larger problems, however,
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the fixed-mode semianalytical method is quite com-
petitive with the forward difference method. For
model A, it is less than twice the cost of the finite
difference method, and for model B, it is essentially
the same.

The number of basis vectors used is a key pa-
rameter in both the analysis and sensitivity calcu-
lations. Table 6.1 shows the number of modes used
in the baseline cost analyses for the five examples.
Here, the effect of the number of modes on the over-
all sensitivity costs is considered. First, the delta
wing example, which is representative of a typical
small problem, is considered. Shown in figure 6.1 is
the cost for the five methods plotted as a function
of number of modes used. The number of modes
ranges from 20 to 100. The values of the other pa-
rameters in the problem are in table 6.1. The key
result from figure 6.1 is that the semianalytical meth-
ods are much more costly than the finite difference
methods for large numbers of modes. There are two
reasons for this: first, because the problem is small,
calculation of the vibration modes is relatively cheap,
and second, because there are a large number of time
steps, formation of the right-hand side in the sensitiv-
ity equations for the semianalytical methods is quite
costly when the number of modes used is large.

For the large model B example, the result of vary-
ing the number of modes is very different. For this
example, the cost of the five sensitivity methods plot-
ted as a function of number of modes is shown in fig-
ure 6.2. In this example, the calculation of the modes
is a very costly operation. Accordingly, the forward
difference method with updated modes is substan-
tially more costly than the other methods for large
numbers of modes. The fixed-mode forward differ-
ence and semianalytical methods show only moderate
increases in cost as the number of modes is increased.

It was mentioned above that a relatively large
number of time steps are used in the five examples.
The effect of the number of time steps on the overall
sensitivity calculation costs is considered here. The
delta wing example is considered as representative
of a small problem; the large model B example, of a
large problem. For the delta wing, the computational
costs for the five sensitivity methods are plotted as
a function of the number of time steps in figure 6.3.
The values of the sensitivity calculation costs here
are similar to those in figure 6.1; the forward differ-
ence methods show only moderate cost increases for
larger numbers of time steps and the semianalytical
methods show substantial cost increases. Again, the
reason is that the right-hand-side formation in the
semianalytical methods is a substantial part of the
total cost in small problems.
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The cost results from a large problem, the
model B example, are very different. however. The
cost as a function of number of time steps is plot-
ted in figure 6.4. Obviously, there is practically no
change in cost for any of the methods as a function of
number of time steps. For this large problem, both
the cost of integrating the uncoupled equations and
the cost of forming the right-hand side in the semi-
analytical methods are 2 to 3 orders of magnitude
less than the total cost.

6.11. Summary

The main objective of this chapter is a compari-
son of the computational costs in number of floating
point operations of the sensitivity calculation meth-
ods. Five example problems were considered-—the
three example problems from chapter 5, which are all
fairly small and two larger hypothetical examples.

Many of the results depend significantly on
whether the problem is one of the three smaller ex-
amples or one of the two larger hypothetical exam-
ples. In the three smaller examples, the cost of sys-
tem matrix factorization is low, whereas in the larger
problems, this cost is quite high. When the cost of
factorization is high, the system eigenproblem is cs-
pecially costly. In the smaller problems, operations
repeated for the reduced problem at each time step
(such as integration of the uncoupled equations) are
a significant percentage of the total sensitivity calcu-
lation cost. For large problems, the relative cost of
these operations is small.

For all five examples, the forward difference
method with fixed modes was the cheapest. For
the smaller problems the forward difference method
with updated modes had a relatively low cost, but
for the larger problems the cost was quite high. For
the larger problems the semianalytical method with
fixed modes and the semianalytical mode accelera-
tion method have costs that are relatively competi-
tive with the fixed-mode forward difference method.
In all cases, the semianalytical method with approx-
imate eigenvector derivatives was one of the more
costly methods.

It was shown in chapter 5 that for two exam-
ples the accuracy of the stress sensitivities for small
numbers of basis vectors was extremely poor. It was
demonstrated that the semianalytical mode accelera-
tion method was one means of dramatically improv-
ing this accuracy. From the results of this chapter,
the semianalytical mode acceleration method is only
slightly more costly than the fixed-mode forward dif-
ference and semianalytical methods. Given the un-
acceptable accuracy of these fixed-mode methods for
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two of the examples, the semianalytical mode accel-
eration method appears to be the method of choice.



Chapter 7

Concluding Remarks

Several methods have been developed and eval-
uated for calculating sensitivities of displacements,
velocities, accelerations, and stresses in linear, struc-
tural, transient response problems. Two of the meth-
ods are overall finite difference methods where the
analysis is repeated for perturbed designs. The other
methods are termed semianalytical methods because
they involve direct analytical differentiation of the
equations of motion with finite difference approxima-
tions of the coefficient matrices. The different sen-
sitivity methods were evaluated by applying them
to three example problems: a five-span simply sup-
ported beam loaded with an end moment, an aircraft
wing loaded with a distributed pressure, and a can-
tilever beam with a stepped cross section loaded with
an applied root angular acceleration.

An important issue in calculating transient re-
sponse sensitivities for use in formal optimization
procedures is how to define the constraints. Two
common approaches are to integrate the response
quantity over time or to pick the maximum (or min-
imum) value of the response quantity in time. Both
these approaches have drawbacks. An alternative
critical point constraint approach was implemented
which identifics the most important response points
along the time history. A method for identifying
these critical points was devised that, based on the
threc examples considered, appears to be very effec-
tive even for very jagged response histories.

All the analyses and sensitivity methods consid-
ered use approximation vectors to reduce the number
of degrees of freedom in the analysis. Vibration mode
shapes, Ritz-Wilson-Lanczos vectors, and static dis-
placement shapes were used in the analysis and sen-
sitivity calculations. The key question when an ap-
proximate reduced basis is used in an analysis is how
many basis vectors are required for an accurate ap-
proximation to the finite element solution. It was
generally found that, if the accuracy of the response
quantities was poor, the accuracy of the sensitivities
was extremely poor. In a number of cases, however,
even though the accuracy of the response quantities
was adequate, the accuracy of sensitivities was poor.
This is discussed further below. In all cases consid-

ered herein, the accuracy as a function of the num-
ber of vectors for both the response quantities and
sensitivities with Ritz-Wilson-Lanczos vectors was as
good or better than with vibration modes. Since the
generation of Ritz-W ilson-Lanczos vectors is cheaper
than vibration modes, they appear to provide a more
cost-effective alternative to modes in many cascs.

A goal in considering sensitivity methods in this
study is that they be suitable for very large-order fi-
nite element analysis. In these types of problems.
a complete vibration analysis for cach perturbed
model is impractical because of the high computa-
tional cost. To reduce this cost, one approach which
was studied herein is to use the basis vectors from
the initial model to approximate the response in the
perturbed model. This often provides an effective so-
lution. In two of the three examples problems consid-
ered, however, using the initial vectors in an overall
finite difference method or assuming fixed modes in
a semianalytical method resulted in very poor modal
convergence for stress sensitivities. Two methods
were devised to improve this poor performance.

The first method retains the derivatives of the
basis vectors in the sensitivity equations but approx-
imates these derivatives rather than using a very
costly exact computation. One well-known method
for approximating cigenvector derivatives, the modal
method. was found to be completely ineffective be-
cause it adds no new information to the existing
modal basis. Another technique, the modified modal
method, adds a pseudostatic contribution to the
cigenvectors in approximating the eigenvector deriva-
tives. This technique, along with the semianalytical
method, was found to be very cffective in improving
the poor accuracy of the stress sensitivities.

A second method for improving the accuracy of
the stress sensitivities as a function of the number of
modes is to use a mode acceleration version of the
semianalytical method. The key to the mode accel-
cration method in the transient analysis is that it
supplements the modal basis with a static contribu-
tion calculated from the complete model. The key to
the mode acceleration implementation of the semi-
analytical sensitivity method is that it supplements
the modal basis with pseudostatic sensitivity terms
caleulated from the complete model. This technique
produced the same dramatic improvement in the ac-
curacy of stress sensitivities as the semianalytical
modified modal method.

As mentioned, computational cost was an over-
riding concern in considering the sensitivity analy-
sis methods. To estimate this cost, expressions for
the number of floating point operations in cach of
the methods were derived. Although this approach
does not include important effects such as overhead
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operations or disk input/output that would be
present in a practical implementation of these meth-
ods, it does provide a mechanism for an approxi-
mate coarse ranking of the methods by computa-
tional cost. The overall forward difference method
with fixed basis vectors was found to be the cheap-
est method for all cases considered. This technique,
however, suffers from the accuracy problems previ-
ously mentioned. One approach to alleviating these
accuracy problems is to recalculate the modes for
the perturbed model (updated modes) in the overall
forward difference method. This forward difference
method with updated modes was found to be very
costly for large models, however. The fixed-mode
semianalytical method is only slightly more costly
than the overall forward difference method with fixed
modes but suffers from the same accuracy problem
as the fixed-mode overall forward difference method.
Two techniques with reasonable costs that alleviate
the accuracy problem are the mode acceleration im-
plementation of the semianalytical method and the
semianalytical method with approximate mode shape
derivatives. Of these two methods, the semianalyti-
cal mode acceleration method is slightly cheaper.

Given the high accuracy of the semianalytical
mode acceleration method for a relatively small num-
ber of modes and its reasonable computational cost,
this appears to be the method of choice. In the three
examples considered herein, this method consistently
performed as well as the much more costly, updated-
mode overall finite difference methods. Furthermore,
the insensitivity of this and the other semianalyti-
cal methods to finite difference step size makes this
semianalytical mode acceleration method especially
attractive.
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Appendix
Computer Implementation

The methods for calculating sensitivities and the example problems have been implemented
with the general purpose finite element code, EAL (ref. 23). EAL includes general language
constructs for controlling execution flow as well as general and specific utilities for manipulating
data stored as named entities in a data base. It also allows procedures (called “runstreams’ )
to be defined and then explicitly executed. Most of the implementation was done with EAL
runstreams. However, some parts of the implementation could not be conveniently done with
runstreams and were coded as Fortran additions to EAL. The Fortran additions are described
in the next section. The runstreams for the algorithms and example problems are included and
described also.

Additions to EAL

The transient response module in EAL version 312 solves the uncoupled form of equa-
tions (2.5) with the matrix secries expansion method. A modification was made to allow equa-
tions (2.5) to be fully coupled. In the semianalytical method, the right-hand-side pseudo loading
of equations (4.6) can be casily formed with EAL. However, a slight modification to the tran-
sient response module was required to permit solution of equations (4.6) with this general form
of loading. In addition, a special purpose module was added to EAL to perform the task of
identifying the critical points on each response function.

Runstream for Stepped Beam Example Problem

The runstream for the stepped beam is included to illustrate how the sensitivity calculation
runstreams are used. At the beginning of the runstream, the data set XFLG ADS indicates which
subset of the possible design variables will be considered in the sensitivity analysis. The data
sets X ADS and XNAME ADS contain the initial values and the register names of all the design
variables, respectively. Various parameters controlling the analysis and sensitivity calculations
are defined in runstream data sets TR PARAMETERS, DXDV PARAMETERS. and BACK METHOD. The
runstream data set MODEL defines the model in terms of the design variables in X ADS. It is called
before the initial dynamic analysis and at least once for each design variable considered in the
sensitivity analysis. The runstream data set DYNAM SOLN is called once to perform the dynamic
analysis of the initial model. The runstream data set PLOT RESP illustrates the interface to a
uscful utility runstream TR PLOT for automatically generating plots of response quantities as a
function of time. TR PLOT is called once for each class (e.g.. accelerations) of response quantity
to be plotted. The actual sensitivity analysis is performed by calling the runstream TR DXDV n
where the n is associated with the particular sensitivity calculation method.

*CM=120000

*XQT EXTE
! SYST = SSP(4,5) $ GET SYSTEM TYPE
*XQT U1
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*INF=7
*CLIB=29
*(ALL) ALL
«XQT AUS
TABLE(NI=1,NJ=9,TYPE=0) : XFLG ADS
J=1 : 1
J=5 !
J=6 :
J=9 :
*XQT U1
*TI(X ADS)
23.5
22.
20.
18.
16.
$
40.
80.0
120.0
160.0
*TI(XNAME ADS)
H1 : H2 : H3 : H4 : HS
XKL1 : XL2 : XL3 : XL4
* (TR, PARAMETERS)
QLIB=1
MNAME=CEM
NMODES=5
DT=1.0E-§
T2 = .3
DRFORMAT=DIAG
METHOD=MODES
DXDV=0
EIGEN=1
PRINT=1
VLIB=1
NCRIT=5
CONV=1 .E-10
BLKSIZE=2000
NTERMS=50
*(DXDV, PARAMETERS)
FDCH=1.0E-5
FDMCH=1.0E-6
DXMD=FIXED
*TI(BACK METHOD)
2 § DISP
1 $ VELDCITIES
1 $ ACCELERATIDNS
1 $ REACTIONS
2 $ STRESSES
*(MODEL) END
! LEN=200.
! NEPS = 3
! NEL = NEPS=5
! NNODE = NEL + 1
*XQT AUS
TABLE(NI=1,NJ=5) : XX1
I=1 : J=1,6 : O. "XL1" "XL2" "XL3" "XL4"
TABLE(NI=1,NJ=5) : XX2
I=1 : J=1,6 : "XL1" "XL2" "XL3" "XL4" "LEN"
D1 = SUM(XX2 -1.0 XX1)
! RNEP = 1.0/NEPS
DELX = UNION("RNEP" D1)
*XQT TAB
START "NNODE" 1 3 4 5
JLOC

o e

oo oo

(=]
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$1 0. 0. 0. 200. 0. O. "NNODE"

1'J=1:"!'%X=0.0
'I1=1: YNl =5
*LABEL 5
! DELX = DS,1,"I1",1(1 DELX AUS 1 1)
t'I2 =1 : ! N2 = NEPS
*LABEL 8
"J* "X" 0.0 0.0
' J=J+1: ! X=X+ DELX
*JGZ,-1(N2,8)
'I1 =11+ 1

*JGZ,-1(N1,5)
"NNOD" "LEN" 0. O.

CON 1

ZERD 1,2,6 : 1
MATC

1 30.+6 .3 .3
BA

RECT 1 1.20 "H1"
RECT 2 1.10 "H2"
RECT 3 1.00 "H3"
RECT 4 .90 "H4"
RECT & .85 "H5"
RECT 6 1.0 20.0
MREF

11211.0
*XQT ELD

E21

' N=25

' I =1

' N1l =1
*LABEL 20

NSECT = "I"

! N2 = N1 + 1

IlNl" "N?Vl 1 HNEPS"
! N1 = N1 + NEPS

tTI=1+1
*JGZ,-1(N,20)
*XQT E

RESET G=386.
«XQT EKS
*XQT TAN
*XQT K

*XQT M

RESET G=386.
*XQT AUS

R = RIGID(1)

DEFINE R6 = R AUS 1 1 6,6
APPL FORC = PROD(-1.0 CEM R6)
«END

«(DYNAM,SOLN) END
*DCALL (TR, VECTORS)

*XQT U1

*«TI(SEL DISP)

"NNODE" 2
*TI(SEL VELO)

"NNODE" 2

*TI(SEL ACCE)

"NNODE" 2
*TI(SEL STRE)

E21 1182110

*XQT AUS
$ DEFINE SOME MODAL DAMPING
TABLE(NI=1,NJ="NMODES") : DRAT
I=1 : J=1,"NMODES" : .005

«DCALL (SQUARE LOAD) RTIME=.18 RANG=10.0
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*DCALL(TR,MAIN)

* END
*(SQUARE,LOAD) END

*XQT AUS

! RT2 = RTIME/2.0

! EPS = 0.0

! RT2M = RT2 - EPS

! RT2P = RT2 + EPS

! RTM = RTIME - EPS

' D2R = 3.1415926/180.

! RRAD = RANG*D2R

! AMP = 4,0*RRAD/RTIME/RTIME

! MAMP = -AMP

TABLE(NJ=6) : TIME

J=1,6 : 0. "RT2M" "RT2P" "RTM" "RTIME" 10000.0
TABLE(NJ=6) : CA

J=1,6 : "AMP" "AMP" "MAMP" "MAMP" 0.0 0.0

*END

*(PLOT RESP) END

*XQT DCU

CHANGE 1 A AUS MASK MASK HIST CA 1 1

«XQT AUS

ALPHA : FTITLE

1’ HISTORY OF FORCE MULTIPLIER G(T)

ALPHA : DTITLE

1’ TIP DISPLACEMENT HISTORY FOR CANTILEVER BEAM
ALPHA : TVTITLE

1’ TIP VELODCITY HISTORY FOR CANTILEVER BEAM
ALPHA : TATITLE

1’ TIP ACCELERATION HISTORY FOR CANTILEVER BEAM
ALPHA : STITLE

1’ BENDING STRESS AT THE ROOT FOR THE CANTILEVER BEAM
! TLIB = 15

«XQT U1

*(TRPLOT OPTIONS)
! YNAME = ’CA

! TITLE = ’FTITLE
'ID=1
*DCALL(TR,PLOT)
*XQT U1

*(TRPLOT OPTIONS)
! YNAME = ’'DISP

! IDJK = ’DISP

! TITLE = 'DTITLE
! ID = "NMODES"
*DCALL (TR, PLOT)
*XQT U1

+(TRPLOT OPTIONS)
! YNAME = ’VELO

t IDJK = ’VELO

! TITLE = *TVTITLE
! ID = "NMODES"
*DCALL (TR, PLOT)
*XQT U1

*(TRPLOT OPTIONS)
! YNAME = ’ACCE

! IDJK = ’ACCE

! TITLE = ’TATITLE
! ID = "NMODES"
*DCALL (TR, PLOT)
*XQT U1

»(TRPLOT OPTIONS)
! YNAME = ’'STRE

! IDQ = ’STRE
! TITLE = 'STITLE
! ID = "NMODES"
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*DCALL(TR,PLOT)

*END

*RGI

*DCALL (TR, PARAMETERS)

*DCALL (SENS,DVUP)

*DCALL (MODEL)

*DCALL(DYNAM, SOLN)
$+DCALL(PLOT,RESP)

+IF("DXDV" NE 0): *DCALL (TR,DXDV, "DXDV")
*ALL

*IF("SYST" EQ CDC ): »PRT(ALL)
«IF("SYST" EQ CNVX): *PRT(ALL)
*«DCALL(ALL)

*XQT EXIT

Runstreams for Sensitivity Methods

Runstream TR MAIN

TR MAIN is the main runstream for performing the transient response analysis and is based
on a similar runstream produced by EISL. It is used only for the transient analysis of the initial
model and not for the sensitivity calculations.

$ __________________________________________________________________

$ (TR MAIN) - MAIN DRIVER FOR TRANSIENT RESPONSE ANALYSIS

$ _________________________________________________________________

* XQT U1

» REGISTER STORE(29 TR REGISTERS 1 1)

« REGISTER RETR (29 TR REGISTERS 1 1)

* RGI

$ DEFAULT REGISTERS:
QLIB = 2  $ SOURCE FOR EXCITATION, DESTINATION LIB FOR RESPONSE
VLIB =1  § SOURCE LIB FOR VIBR MODE AND VIBR EVAL DATASETS
VSET =1  § USE "VLIB" VIBE MODE "VSET" "VCON" FOR THE RITZ
VeON =1 § FUNCTIONS
KNAME = K § STIFFNESS MATRIX
MNAME = DEM $ MASS MATRIX
DAMP = DAMP $ NAME OF SPAR FORMAT DAMPING MATRIX
FSET =1  $ EXCITATION SET NUMBER
NAME = AUS §$ 2ND WORD OF TIME "NAME" AND CA "NAME"
DT =0. § SET TIME INCREMENT
T2 =0. $ FINAL INTEGRATION TIME
DRFORM= DIAG $ FORMAT FOR THE REDUCED MATRICES (DIAG,FULL,RITZ)
DRMETH= 0  $ TIME INTEGRATION METHOD (0=MSE)
NTER = 50 § SET NUMBER OF TERMS IN MATRIX SERIES EXPANSION
NMODES= O  $ NUMBER OF MODES USED IN DYNAMIC ANALYSIS (DEFAULT=ALL)
BLKSIZ= 6000 $ BLOCK SIZE FOR OUTPUT DATASETS
EIGEN = 0  $ EIGENVALUE ANALYSIS OF DAMPED SYSTEM
PRINT = 0 $ PRINT FLAG FOR DTEX

OPT=0, PROC=MAIN, NERR=0
% DCALL,OPT (TR PARAMETERS)
v ZERO = SSP(0,10)
+IF("NMODES" EQ O): ! NMODE=TOC, NBLOCK("VLIB" VIBR MODE "VSET" "VCDN")

COMPUTE DATASETS REQUIRED FOR DR/DTEX, /TR1, AND /BACK:
CALL (TR PREP)

COMPUTE THE MODAL RESPONSE:

XQT DRX

IF("DT" GT 1.E-20): *GOTO 20

DTEX(INLI=“QLIB",N2="NAHE",0UTL="QLIB",EIGEN=“EIGEN",>
PRINT="PRINT")

E % P PP * D PG

*GOTO 30
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*LABEL 20
DTEX(INLI="QLIB",N2="NAME",UUTL="QLIB",DT="DT",>
NTER="NTER",EIGEN="EIGEN" ,PRINT="PRINT")

*LABEL 30
TR1 (INLIB="QLIB",N2="NAME”,CASE="FSET”,ALIB=”QLIB">
QXLIB="QLIB",QXlLIB="QLIB",QX2LIB="QLIB",>
T2="T2",LB="BLKSIZ")

$

$ BARK TRANSFORMATION:

$

*XQT AUS

' NBCK = 5

TABLE(NI="NBCK", NJ=1, TYPE=4) : "QLIB" BACK LIST
J=1 : DISP VELO ACCE REAC STRE

$
EXIT

'I=1:1t N = NBCK

*LABEL 50

! BKMETH = DS,1,"I",1("QLIB" BACK METH 1 1)
! NM = D5,"I",1,1("QLIB" BACK LIST 1 1)

! IERR = TOC,IERR("QLIB" SEL “NM" MASK MASK)
*IF("IERR" EQ 0): *CALL (TR "NM" "BKMETH")
'I=1+1

*JGZ,-1(N,50)
$
$ EXIT:

* XQT U1

* REGISTER RETRIEVE(29 TR REGISTERS 1 1)
*END

Runstream TR PREP

This Runstream TR PREP is used to define the reduced equations for the transient analysis
and also to prepare data for the back transformation phase. It is based on an EISI runstream
of the same name. It is used only for the transient analysis of the initial model and not in the
sensitivity calculations.

* XQTC U1
RGI

*

PROC=PREP, NERR=0, MOTI=MOTI, FORC=FORC

CHECK FOR THE REQUIRED DATASETS AND DETERMINE THE TYPE OF EXCITATION:
'TYPE=0 FOR APPLIED FORCE. ITYPE=1 FOR APPLIED DISPLACEMENT.

¥ B B P

!TYPE=2

'IERR=TOC, IERR("QLIB" APPL FORC "FSET" MASK)
* IF("IERR" NE 0): %GO TO 100

'TYPE=0: !FNAME="FORC  $$ APPLIED FORCE EXCITATION
* LABEL 100

'IERR=TOC, IERR("QLIB" APPL MOTI "FSET" MASK)
* IF("IERR" NE 0): %GO TD 200

* IF("TYPE" EQ 0): 'NERR=1 $$ FORCE & DISP SPECIFIED $ NERR=1
'TYPE=1: !FNAME='MOTI  $$ APPLIED DISPLACEMENT EXCITATION

* LABEL 200

* IF("TYPE" EQ 2):!NERR=2 $$ NO EXCITATION SPECIFIED $ NERR=2

* IF("NERR" NE 0):*CALL (TR ERROR)
'IERR=TOC,IERR("VLIB"” VIBR MODE "VSET" “VCON"): INERR=3

* IF("IERR" NE 0):*CALL (TR ERROR) $ NERR=3
' IERR=TOC, IERR("VLIB" VIBR EVAL "VSET" "VCON"): !NERR=4

* IF("IERR" NE 0):*CALL (TR ERROR) $ NERR=4
'IERR=TOC,IERR("QLIB" TIME "NAME" "FSET" MASK): !NERR=5

* IF("IERR" NE 0):*CALL (TR ERROR) $NERR=5
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'TERR=TOC, IERR("QLIB" CA "NAME" "FSET" MASK):
IF("IERR" NE 0):*CALL (TR ERROR)

COMPUTE XTMX, XTKX, XTDX, & XTF FOR DR/DTEX & TR1:

@w W B *

ITERR=TOC, IERR(1 INV "KNAME" "VCON" MASK)
IF ("IERR" EQ 0):*GD TO 250
= XQT DRSI
RESET K="KNAME",CON="VCON"
= LABEL 250
$
*XQT AUS

*

QOUTLIB="QLIB": INLIB="QLIB"
DEFINE X="VLIB" VIBR MODE "VSET" "VCON"
DEFINE E="VLIB" VIBR EVAL "YSET" “VCON"
DEFINE F="QLIB" APPL "FNAME" "FSET"
DEFINE K= 1 "KNAME"
DEFINE M= 1 "MNAME"
« IF("TYPE" EQ 0): *GO TO 300
KS=PROD("KNAME" -1. F): DEFINE F=KS
* LABEL 300
XTF "NAME" “"FSET"= XTY(X,F)
$
| IDMD = TOC,IERR("VLIB" DRAT MASK MASK MASK)
«IF("IDMD" NE 0): =GOTO 400
DEFINE D = “"VLIB" DRAT
OMEG = SQRT(E)
DMPD = PROD(2.0 D OMEG)
*LABEL 400
VIERR=TOC, IERR("QLIB" XTMX "NAME" MASK MASK)
« IF("IERR" EQ 0): *GO TO 500
$
*CALL(TR,REDM)
LABEL 500

*

COMPUTE ("QLIB" STAT DISP "FSET" "VCON"):

@ B &H

VIERR=TOC, IERR("QLIB" STAT DISP "FSET" "VCON")
IF("IERR" EQ 0): *GO TO 700
XQT SSOL
RESET SET="FSET",CON="VCON",QLIB="QLIB"
* LABEL 700
$
+*LABEL 1000
*END

*

*

Runstream TR DISP

The two TR DISP runstreams do the back transformation for displacements. TR DISP 1
performs the back transformation with the mode displacement method and TR DISP 2 uscs
the mode acceleration method. This naming convention is used for the other runstreams
that perform the back transformation operation for other response quantities. The TR DISP
runstreams and companion runstreams for velocities, accelerations, and stresses perform the
back transformation at all time steps. Accordingly they are used only in the dynamic analysis
of the initial model and not in the sensitivity analysis.

ISR S
$ (TR DISP 1) - BACK TRANSFORMATION FOR DISPLACEMENTS

$ MODE DISPLACEMENT METHOD
PR bt
*XQTC AUS

QUTLIB="QLIB": INLIB="QLIB"
DEFINE IDJK = "QLIB" SEL  DISP
DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"

'NERR=6

$NERR=6

65



TMAT VMOD=SVTRAN(IDJK,X)

*XQT DRX
BACK(LRZ="BLKSIZE")
T = +1.0 "QLIB" TMAT VMOD : Y = “QLIB" QX
Z= "QLIB" HIST DISP
EXT = "QLIB" EXT DISP "FSET"
*END
B o m e e

$ (TR DISP 2) ~ BACK TRANSFORMATION FOR JOINT DISPLACEMENTS
MODE ACCELERATION METHOD

TRANSIENT RESPONSE: BACK TRANSFORMATION FOR JOINT DISPLACEMENTS
APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION

REGISTERS: QLIB, NAME, FSET, VCON

XQT AUS

ID = TOC,IERR("QLIB" XTDX MASK MASK MASK)
OQUTLIB="QLIB": INLIB="QLIB"
DEFINE E = "VLIB" VIBR EVAL
ROMG = RECIP(E)

Rl - B R R A Y

DEFINE IDJK = "QLIB" SEL  DISP
DEFINE XS = "QLIB" STAT DISP “FSET" "VCON"
DEFINE X = "VLIB" VIBR MODE 1 "VCON"

DEFINE DACC = TMAT DACC

XOME = CBD(X,ROMG)

TMAT DACC = SVTRAN(IDJK,XOME)

TMAT DS = SVTRAN(IDJK,XS)
*JNZ(ID,30)
$ DAMPING TERM
! NJ = TOC,NJ("QLIB" XTDX MASK MASK MASK)
! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)
*«IF("NJ" NE "NINJ"): *GDTO 10
$ MODAL DAMPING

XOMD = CBD(XOME,XTDX)

TMAT DVEL = SVTRAN(IDJK,XOMD)
*GOTO 30
*LABEL 10
$ GENERAL DAMPING
TMAT DVEL = RPROD(DACC,XTDX)
*LABEL 30
* XQT DRX

BACK(LRZ="BLKSIZE")

T = +1. "QLIB" TMAT DS : Y = "QLIB" A "NAME" "FSET"
*IF("ID" EQ 0): T=-1. "QLIB" TMAT DVEL : Y="QLIB" QX1 "NAME" "FSET"

T = -1. "QLIB" TMAT DACC : Y = "QLIB" QX2 "NAME" "FSET"

Z = "QLIB" HIST DISP "FSET"

EXT = "QLIB" EXT DISP "FSET"
*END

Runstreamn TR VELD

$-mo - —— e
$ (TR VELO 1) - BACK TRANSFORMATION FOR VELOCITIES
$ MODE DISPLACEMENT METHOD
B e
*XQTC AUS

QUTLIB="QLIB": INLIB="QLIB"

DEFINE IDJK = "QLIB" SEL VELO

DEFINE X = "VLIB" VIBR MODE "VSET" "VCON"

TMAT VVEL=SVTRAN(IDJK,X)
*XQT DRX

BACK(LRZ="BLKSIZE")
T = +1.0 "QLIB" TMAT VVEL : Y = "QLIB" QX1

66




z= "QLIB" HIST VELO
EXT = "QLIB" EXT VELO "FSET"
*END

Runstream TR ACCE

$ __________________________________________________________________
$ (TR ACCE 1) - BACK TRANSFORMATION FOR ACCELERATIONS
$ MODE DISPLACEMENT METHOD
$ __________________________________________________________________
*XQTC AUS
QUTLIB="QLIB": INLIB="QLIB"
DEFINE IDJK = "QLIB" SEL  ACCE
DEFINE X = "VLIB" VIBR MODE "“VSET" "VCON"
TMAT VACC=SVTRAN (IDJK,X)
*XQT DRX
BACK (LRZ="BLKSIZE")
T = +1.0 "QLIB" TMAT VACC : Y = "QLIB" QX2
Z= "QLIB" HIST ACCE
EXT = "QLIB" EXT ACCE "FSET"
*END
Runstreamn TR STRESS
$ __________________________________________________________________
$ (TR STRESS 1)
$ __________________________________________________________________
$
$ MODE DISPLACEMENT STRESS BACK TRANSFORMATION
$
*XQT ES
RESET OPER=T

IDQ= "QLIB" SEL STRESS
U = "VLIB" VIBR MODE 1 "VCON" 1,"NMODE"
T = "QLIB" TMAT VSTRE "FSET"
*XQT DRX
BACK (LRZ="BLKSIZE")
T = +1. "QLIB" TMAT VSTRE "FSET" : Y = "QLIB" QX "NAME" "FSET"
Z = "QLIB" HIST STRESS "FSET"
EXT = "QLIB" EXT STRESS "FSET"

*END
PSR S et
$ (TR STRESS 2)
et
$

$ TRANSIENT RESPONSE: BACK TRANSFORM FOR ELEMENT STRESSES

$ APPLICABLE FOR APPLIED FORCE OR DISPLACEMENT EXCITATION

$

$ REGISTERS: QLIB, NAME, FSET, VCON

$

* XQT AUS

t

1D = TOC,IERR("QLIB" XTDX MASK MASK MASK)
OUTLIB="QLIB": INLIB="QLIB"
DEFINE E = "VLIB" VIBR EVAL
ROMG = RECIP(E)
DEFINE IDJK "QLIB" SEL  DISP
DEFINE XS = "QLIB" STAT DISP "FSET" "VCON"
DEFINE X = "YLIB" VIBR MODE 1 "VCON"
XOME = CBD(X,ROMG)
«JINZ(ID,30)
$ DAMPING TERM
' NJ = TOC,NJ("QLIB" XTDX MASK MASK MASK)
! NINJ = TOC,NINJ("QLIB" XTDX MASK MASK MASK)
*IF("NJ" NE "NINJ"): *GOTO 10
$ MODAL DAMPING



XOMD = CBD(XOME,XTDX)
*GOTO 30
*LABEL 10
$ GENERAL DAMPING

XOMD=CBR (XOME, XTDX)

*LABEL 30
*«XQT ES
RESET OPER=T
IDG = "QLIB" SEL STRESS
U= "QLIB" STAT DISP "FSET" "VCON" : T= "QLIB" TMAT SF
*IF("ID" EQ 0): U= “QLIB" XOMD : = "QLIB" TMAT SD
U= “QLIB" XOME : T= "QLIB" TMAT SP
* XQT DRX
BACK(LRZ="BLKSIZE")
T = +1. "QLIB" TMAT SF : Y = "QLIB" A "NAME" "FSET"
*IF("ID" EQ 0): T=-1. "QLIB" TMAT SD : Y = "QLIB" QX1 "NAME" “FSET"
T = -1. "QLIB" TMAT SP : Y = "QLIB" QX2 "NAME" "FSET"
Z = "QLIB" HIST STRE "FSET"
EXT = "QLIB" EXT STRE "FSET"
*END

Runstreamn TR ERROR

s __________________________________________________________________

$ (TR ERROR)

$ __________________________________________________________________

$

$ THIS PROCEDURE PRINTS FATAL ERROR MESSAGES FOR THE TR PROCS.

$

* XQT U3
RP2: NUMBER OF FORMATS=10
FORM 1°(33H1+* TR FATAL ERROR: PROC, NERR= ,A4,1H,,I4)
PRINT(1) "PROC" “NERR"

* GO TO "PROC"

$

* LABEL PREP

$
FORM 1°(10X,47H .BOTH (APPL FORC FSET ) AND (APPL MOTI FSET )/

' 10X,46HARE SPECIFIED IN QLIB , ONLY ONE IS PERMITTED)
FORM 2’ (10X,48HNEITHER (APPL FORC FSET ) NOR (APPL MOTI FSET )/
’ 10X,20HIS PRESENT IN QLIB )

FORM 3°(10X,47HVIBR MODE VSET VCON IS NOT PRESENT IN VLIB )
FORM 4°(10X,47HVIBR EVAL VSET VCON IS NOT PRESENT IN VLIB )
FORM 5’(10X,43HTIME NAME FSET IS NOT PRESENT IN QLIB )
FORM 6’(10X,43HCA  NAME FSET IS NOT PRESENT IN QLIB )
PRINT ("NERR")

$

* GO TO FINIS

$

* LABEL FINIS

* XQT U1

* SHOW

* XQT DCU
TOC 1: TOC "QLIB": TOC "VLIB"

* XQT EXIT

*END

Runstream TR RITZ

Runstream TR RITZ calculates RWL vectors following equations (2.25) through (2.29). Then
the reduced system is optionally uncoupled by solving the reduced-order eigenproblem. This
runstream is substantially based on one written at EISI.



* XQT U1
$
$$$ REGISTERS: MAXHZ, AFLIB, VLIB, MNAME, NMD, SCALE
$
+ REGISTER STORE (29 REGISTER HOUSE 1 1)
» REGISTER RETR (29 REGISTER HOUSE 1 1)
1 TERR=TOC IERR(i INV K MASK MASK)
*0ONLINE=0
* IF("IERR" EQ 0): »GO TO 109
= XQT DRSI
» LABEL 109
« XQT SSOL
RESET QLIB="AFLIB"
= XQT AUS
OUTLIB=10: INLIB=10
DEFINE M=1 "MNAME"

SCALE THE FIRST VECTOR

R4

DEFINE X="AFLIB" STAT DISP 1 MASK 1
MX=PROD (M, X)

XTMX=XTY (X,MX)

RECI=RECI (XTMX)

SCAL=SQRT (RECI)

11 RITZ VECT=CBD(X,SCAL)

DEFI RITZ=11 RITZ VECT

12 MX=PROD(M,RITZ)

INSET=TOC NBLOCKS("AFLIB" STAT DISP 1 MASK)
IN=NSET-1: !N1=1 : !N2=0

IF ("N" EQ 0): *GO TO 104

M-ORTHONORMALIZE VECTORS 2 THROUGH NSET

* H B B

LABEL 105
tN1=N1+1: IN2=N2+1
DEFI U="AFLIB" STAT DISP 1 MASK "N1"
DEFI MX=12 MX MASK MASK MASK 1 "N2"
XTMU=XTY (MX,U)
DEFI X=11 RITZ VECT MASK MASK 1 "N2"
A=CBR(X,XTMU)
U1=SUM(U,-1. A)
MU=PROD (M,U1)
UTMU=XTYD(U1,MU)
RECI=RECI (UTMU)
SCAL=SQRT(RECI)
VECT=CBD(U1,SCAL)
11 RITZ VECT=UNION,U(VECT)
TEMP=PROD (M, VECT)
12 MX =UNION,U(TEMP)
JGZ -1 (N 105)
= LABEL 104
= XQT DCU
ERASE 10
| NDO=NMD-NSET: 'SET=NSET+1: !SET1=NSET
= IF ("NDO" LE 0): »GO TO 1002
XQT AUS
TABLE(NJ=1): 13 SCALE
J=1: "SCALE"

*

*

GENERATE REMAINING VECTORS ORTHONDRMAL TO STATIC SOLUTION RITZ VECTORS

LABEL 1000
XQT AUS
OUTLIB=10: INLIB=10
DEFINE M=1 "MNAME"
DEFINE X=11 RITZ VECT MASK MASK "SET1"

* X P B &
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TEMP=PROD(M, X)
NORM=NORM(TEMP)

DEFI SCALE=13 SCALE

APPL FORC=CBD(NORM,SCALE)

* IF("SET1" EQ "NSET"): *GO TO 106
12 MX=UNION,U(TEMP)

* LABEL 106

* XQT SsOL
RESET QLIB=10

* XQT AUS

OUTLIB=10: INLIB=10
DEFI U=STAT DISP
DEFI MX=12 MX MASK MASK MASK 1 "SET1"
XTMU=XTY (MX,U)
DEFI X=11 RITZ VECT MASK MASK 1 "SET1"
A=CBR(X,XTMU)
U1=SUM(U,-1. A)
DEFI M=1 "MNAME"
MU=PROD (M, U1)
UTMU=XTYD (U1, MU)
RECI=RECI (UTMU)
SCAL=SQRT (RECI)
VECT=CBD(U1,SCAL)
11 RITZ VECT=UNION,U(VECT)
!SET1=8ET: !SET=SET+1
* XQT DCU
ERASE 10
* JGZ,-1(NDD, 1000)
* LABEL 1002
*IF("DRFORMAT" EQ DIAG): *GOTD 10020
* XQT AUS
DEFI X=11 RITZ VECT
"VLIB" VIBR MODE 1 1=UNION(X)
TABLE(NI=1,NJ="NMD") : VIBR EVAL
*RETURN
«LABEL 10020
* XQT AUS
QUTLIB=10: INLIB=10
DEFINE K=1 K: DEFI M=1 "MNAME"
DEFINE X=11 RITZ VECT
IJCODE=10000
! NMODE=NMD
KX=PROD(K,X): SYN K 10000 "NMODE" = XTYS(X,KX)
MX=PROD(M,X): SYN M 10000 "NMODE" = XTYS(X,MX)
! ZERO=NMODE-1
* JZ (ZERO,1003)
«XQT DCU
TOC 10
* XQT STRP
RESET SOURCE=10, DEST=10, FRQ2="MAXHZ"
* JGZ (ZERO,1004)
* LABEL 1003
* XQT AUS
OUTLIB=10: INLIB=10
'K=DS 2 1 1(10 SYN K MASK MASK)
tM=DS 2 1 1(10 SYN M MASK MASK)
'EVAL=K/M
TABLE(NI=1,NJ=1): SYS EVEC: J=1: 1.0
TABLE(NI=1,NJ=1): SYS EVAL: J=1: "EVAL"
* LABEL 1004
* XQT AUS
QUTLIB=10: INLIB=10
DEFINE E=SYS EVEC
DEFI X=11 RITZ VECT
X ORTH 1 1=CBR(X,E)
DEFINE X=X ORTH 1 1
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"YLIB” VIBR MODE 1 1=UNION(X)

DEFINE E=SYS EVAL

*VLIB" VIBR EVAL 1 1=UNION(E)

"VLIB" VIBR HZ 1 1=SQRT(.0253303 E)
*0ONLINE=1
* XQT DCU

PRINT "VLIB" VIBR HZ 1 1
« XQT U1
* REGISTER RETR (29 REGISTER HOUSE 1 1)
*END

Runstrearm TR REDM

TR REDM is a utility runstream for generating the reduced equations given a set of basis
vectors. Depending on the input register DRFORMAT the equations can be coupled or uncoupled.
If the equations are uncoupled, it is assumed that ®TM® is the identity matrix and TK®
is a diagonal matrix with the eigenvalues along the diagonal.

S
$ (TR REDM) - FORM REDUCED K AND M MATRICES FOR TRANSIENT RESP.
RS e e it
$
$ REGISTERS:
$ DRFO = ’FULL, ’RITZ, OR ’DIAG
$ NMODE = NUMBER OF MODES
$ MNAME = MASS MATRIX NAME
$ VLIB = LIBRARY FOR VIBRATIONAL MODES AND FREQS
$ QLIB = DESTINATION LIBRARY FOR MATRICES
$
*XQTC AUS
QUTLIB="QLIB"

DEFINE X = "VLIB" VIBR MODE 1 1 1,"NMODES"
DEFINE E = “VLIB" VIBR EVAL 1 1

DEFINE DAMP = 1 DAMP SPAR

DEFINE DMPD = 1 DMPD

1 IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)

' IDMD = TOC,IERR(1 DMPD MASK MASK MASK)

! DRFOD

*«IF("DRFO" NE FULL): =*=GOTC 100

$
$ FULL MATRICES, X IS A SET OF EIGENVECTORS
$

! N = NMODES

' I =1

TABLE (NI="NMODES" ,NJ="NMODES") : XTMX
«LABEL 10

I="I" : J="I" : 1.0

1 I =1I+1
*JGZ,-1(N,10)

! N = NMODES

tI=1

TABLE(NI="NMODES" ,NJ="NMODES") : XTKX
*LABEL 20

' K = DS,"I",1,1("VLIB" VIBR EVAL 1 1)
I="I" : J="I" : "K"

1t I=1I+1
*JGZ,-1(N,20)
*IF("IDSP" NE 0): *GOTO 85

OUTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTY(X,DX)

*LABEL 85
*IF("IDMD" NE 0): *RETURN
! N = NMODES : ! I =1

*IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES")

"QLIB" XTDX
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+IF(“IDSP" EQ 0): TABLE,U : "QLIB" XTDX
*LABEL 90

t D = DS,"I",1,1("VLIB" DMPD MASK MASK MASK)
I="I" : J=tI* ; "p»

P I=1+1

*JGZ,-1(N,90)

*RETURN
*LABEL 100
3

$ FULL REDUCED MATRICES (X NOT EIGENVECTORS)
$

+IF("DRFO" NE RITZ): *GOTO 200
OUTLIB=22 : INLIB=22

DEFINE K = 1 K SPAR

DEFINE M = 1 "MNAME"

KX = PROD(K,X)

MX = PROD(M,X)

"QLIB" XTKX = XTY(X,KX)

"QLIB" XTMX = XTY(X,MX)
*IF("IDSP" NE 0): *GOTO 130

DUTL=22 : INLI=22

DX = PROD(DAMP,X)

“QLIB" XTDX = XTY(X,DX)

«LABEL 130
*IF("IDMD" NE 0): *RETURN
! N=NMODES : ! I =1

+«IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES") : "QLIB" XTDX
*IF("IDSP" EQ O): TABLE,U : "QLIB" XTDX

*LABEL 140

' D =DS,"I",1,1("VLIB" DMPD MASK MASK MASK)

I="1I" : J="I" : "D"

' T =T1+1
*JGZ,-1(N,140)
*RETURN
*LABEL 200

$
$ SIMPLE DIAGONAL CASE (X EIGENVECTORS)
$

TABLE(NI=1,NJ="NMODES") : XTKX : TRAN(SOUR=E)
TABLE(NI=1,NJ="NMODES") : XTMX : J=1,"NMODES" : 1.0
*=IF("IDSP" NE 0): *GOTO 210

0UTL=22 : INLI=22

DX = PROD(DAMP,X)

"QLIB" XTDX = XTYD(X,DX)

*LABEL 210
*IF("IDMD" NE 0): *RETURN
! N=NMODES : ' I =1

*IF("IDSP" NE 0): TABLE(NI=1,NJ="NMODES") : "QLIB" XTDX
=IF("IDSP" EQ 0): TABLE,U : "QLIB" XTDX
*LABEL 220
! D =DS,"I",1,1("VLIB" DMPD MASK MASK MASK)
I=1 : J="I" : "D"
'I=1+1
*JGZ,-1(N,220)
*RETURN
*END

Runstream TR PLOT

TR PLOT is a utility runstream for producing plots of response quantities as a function of
time. Its use is demonstrated in the stepped beam example runstream.



$

¢ PLOTS TRANSIENT, TIME HISTORY DATA PRODUCED BY DR/TR1
$

+REGISTER EXCEPTIONS TLIB

*REGISTER STORE ("TLIB" TR REG 1 1)

+REGISTER RETRIEVE("TLIB" TR REG 1 1)

$ DEFAULT REGISTER ASSIGNMENTS
! INLIB=1
! IDJK = ’NONE
y IDQ = ’NONE
! YNAME = ’DISP
' N3 =1
| TITLE = °TITLE
' ID =1
! OPT=0
«DATA,OPT(TRPLOT OPTIONS)
NS1 = TOC,NI("INLIB" HIST "YNAME"" N3" MASK)

NWi = TOC,NWDS("INLIB" HIST "YNAME" "N3" MASK)
NBLK = TOC,NBLOCKS("INLIB" HIST "YNAME" "N3" MASK)
NJBL = TOC,NJ("INLIB" HIST "YNAME" "N3" MASK)

NS1 : ! NWi : ! NBLK : ! NJBL

! NSTE=NW1/NS1

NPPT=NSTE

1 DT=DS,1,1,1("INLIB" DT MASK MASK MASK) $ TIME STEP
v TIDQ = TOC,IERR{"INLIB" SEL “IDQR" MASK MASK)

$
!
!
1
1
t

! TIDJ = TOC,IERR("INLIB" SEL *IDJK” MASK MASK)
' TTIT = TOC,IERR("INLIB" “TITLE" MASK MASK MASK)
*ONLINE=0
*=XQT AUS
TABLE(NI=1,NJ="NPPT") : "TLIB" XTAB
DDATA="DT"

J=1,"NPPT" : 0.0

$

$ LOOP OVER ALL RESPONSE QUANTITIES
$

!

1

| NJLS = 1-NBLK*NJBL + NSTE $ NJ OF LAST BLOCK

! KBLK = NBLK - 1

| DBLS = KBLK*NJBL

' JBLK = KBLK

! NSM1 = NS1 - 1

| SBASE = O

! NJLS

1 T1=1 : ! N1=NS1

*LABEL L1

DEFINE Y = "INLIB" HIST "YNAME” "N3" 1 1,"JBLK"
TABLE(NJ="NSTE") : "TLIB" YTAB AUS "I1"

+JZ(KBLK,L2)
TRAN(SDUR=Y,SBAS="SBAS",SSKIP="NSM1",ILIM=1,JLIM="NJBL")
*LABEL L2

DEFINE Y = "INLIB" HIST "YNAME" "N3" 1 "NBLK","NBLK"
TABLE,U . "TLIB" YTAB AUS “"I1"
TRAN(SDUR=Y,SBAS="SBAS",SSKIP=”NSM1",ILIM=1,JLIM="NJLS",DBAS="DBLS")
| SBASE = SBASE + 1

VoI1=I1+1

*JGZ,-1(N1,L1)

$

$ GENERATE AN X,Y PLOT FOR EACH RESPONSE QUANTITY

$

=ONLINE=1

*XQT PXY

RESET DEVICE=META

RESET NDEV=4014

FONT XNUM=1 : FONT YNUM=1

FONT XLAB=1 : FONT YLAB=1

FONT TEXT=1
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X = "TLIB" XTAB
XLABEL’ TIME (SEGONDS)
*INZ(TIDJ,110)

YLFORMAT, 72>

’(4H J =,12,9H JOINT = ,I5,8H COMP = ,I2,8H HIST = »A4,6H ID = ,16)
«LABEL 110
*JNZ(TIDQ,120)

YLFORMAT, 72>

*(4H J= ,I2,1X,A4,6H GRP= »12,6H IND= ,I5,7H COMP= ,A4,5H ID= ,16)
*LABEL 120

XAXIS=3,5,10

YAX1S=4,5,10

TP0S=0,0

! I1=1 : ! Ni1=NS1
*JNZ(TTIT,L3)

TEXT = "TITLE"
*LABEL L3
ADVANCE

BOUNDARIES = .01 .99 .04 .1
*INZ(TTIT,L4)

PLOT TEXT
*LABEL L4
BOUNDARIES=.01 .99 .15 .85

Y = "TLIB" YTAB AUS "I1"
*JNZ(TIDJ,210)

! JOINT = DS,1,"I1",1("INLIB" SEL "IDJK" MASK MASK)
! COMP = DS,2,"I1",1("INLIB" SEL "IDJK" MASK MASK)
YLABEL "I1" “JOINT" "COMP" "YNAME" “ID"
*LABEL 210
*JNZ(TIDQ,220)
! ENAME = DS,1,"I1",1("INLIB" SEL "IDQ" MASK MASK)
! EGRP = DS,2,"I1",1("INLIB" SEL "IDQ" MASK MASK)

! EINDX = DS,3,"I1",1("INLIB" SEL "IDQ" MASK MASK)
! ECOMP = DS,4,"I1",1("INLIB" SEL "IDQ" MASK MASK)
YLABEL "I1" "ENAME" "EGRP" "EINDX" "ECOMP" "ID"
*LABEL 220

INIT

PLOT CURV

! I1=I1+1
*JGZ,-1(N1,L3)
*XQT U1
*REGISTER RETRIEVE ("TLIB" TR REG 1 1)
«FREE "TLIB"
*RETURN
*END

Runstream TR VECTORS

Runstream TR VECTORS generates basis vectors by calling the system eigensolver, calling
runstream TR RITZ, using the static mode method, or by other experimental techniques.

$ (TR,VECTORS) - COMPUTE VECTORS FOR USE IN DYNAMIC ANALYSIS
s ______________________________________________________________
*XQT AUS

R = RIGID(1)

CR = PROD{"MNAME",R)

Z = NDDF,1(CR)

! NDDF = DS,1,1,1(1 Z AUS 1 1)

! NDDF

*IF ("METHOD" NE MODE) : *GOTD 100

*XQT E4

RESET NMODES="NMODES"

RESET M="MNAME"

RESET NDDF="NDDF"

RESET CONV="CONV"
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*DCALL,OPT(E4 PARAMETERS)

*GOTO 200

$

*LABEL 100

*IF ("METHOD" NE RITZ): *GOTO 105
' MAXHZ = 1.03E+10

| NMD = NMODES

! SCALE = 1.0

" AFLIB = 1

' VLIB = 1

*DCALL(TR RITZ )

*GOTO 200

$

*LABEL 105

«IF ("METHOD” NE OLD): *GOTO 110
*XQT DCU

COPY 3 1 VIBR MODE

COPY 3 1 VIBR EVAL

*GOTO 200

*LABEL 110

*IF("METHOD" NE DNES): *GOTO 115
*DCALL (TEST NEB3)

*GOTO 200

*LABEL 115

+IF("METHOD" NE STAT): *GOTO 120
*XQT E4

RESET NMODES="NMODES"

RESET M="MNAME"

RESET NDDF="NDDF"

RESET CONV="CONV"

*DCALL,0PT(E4 PARAMETERS)

*XQT DRSI

*XQT SSOL

$ ORTHOGONALIZE STATIC SOLUTION AND APPEND TO SET OF MODE SHAPES
*DCALL (TR, GRAM)

$ MAKE THE VECTORS ORTHOGONAL WITH RESPECT TO BUTH K AND M
*DCALL (TR DIAG)

*XQT VPRT

PRINT S1 AUS

*XQT DCU

TOC 1

PRINT 1 VIBR EVAL

*LABEL 120

+IF("METHOD" NE UMOT): »GO TO 200
*XQT AUS

Z = NDDF,1,2(CR)

*XQT DRSI

RESET CON=2

*XQT AUS

UDF = 1

SSPREP (K, 2)

*XQT DCU

CHANGE 1 BNF MASK MASK MASK VIBR MODE 1 1
$ UNCOUPLE THE SYSTEM
*DCALL (TR, DIAG)
$ END OF METHODS OPTIONS
*LABEL 200
*END

Runstream TR GRAM

TR GRAM is a utility runstream for performing a Gram-Schmidt orthogonalization of a set
of vectors.

$ (TR,GRAM) - PERFORM GRAM-SCHMIDT PROCESS TO M-ORTHOGONALIZE
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$ STAT DISP WITH RESPECT TO VIBR MODE AND THEN
$ REPLACE THE LAST VIBR MODE WITH THE NEW VECTOR

*XQT AUS

! NMM1 = NMODES - 1

DEFINE X = VIBR MODE t 1 1,"NMM1"
DEFINE S = STAT DISP 1 1

DEFINE M = "MNAME"

INLIB=10 : DUTLIB=10

$ ORTHOGONALIZE THE STATIC SOLUTION WITH RESPECT TO THE MODE SHAPES
MX = PROD(M,X)

XTMS = XTY(MX,S)

A = CBR(X,XTMS)

S1 = SUM(S, -1.0 &)

$ NOW SCALE THE VECTOR

MS = PROD(M,S1)

STMS = XTY(S1,MS)

! STMS = DS,1,1,1(10 STMS AUS 1 1) : ! STMS = STMS*%.,5 : ! STMS = 1.0/STMS
TEMP MODE 1 1 = UNION("STMS" S1,X)
*XQT DCU

CHANGE 10 TEMP MODE 1 1 VIBR MODE 1 1
COPY 10 1 VIBR MODE 1 1

*DELETE 10

*END

Runstream SENS DVUP

SENS DVUP is a utility runstream for updating the design variable registers based on the
data sets X ADS and XNAME ADS. It is always called immediately before calling MODEL so the
current values of the design variables are available for use.

s _______________________________________________________________
$ (SENS DVUP) - UPDATE DESIGN VARIABLE REGISTERS FROM DATASET

s _______________________________________________________________
*XQT U1

! N = TOC,NJ(1 XNAME ADS 1 1)

S SR

*LABEL 10

! RNAME = DS,1,"I",1(1 XNAME ADS 1 1)

! RVAL = DS,1,"I",1(1 X ADS 1 1)

! “RNAME" = "RVAL"

! "RNAME"

1I=1+1

*JGZ,-1(N,10)

*END

Runstream TR DXDV 1

The TR DXDV n runstreams implement the different sensitivity methods. The structure of
all these runstreams is similar. In each case there is a loop over the designated design variables,
and sensitivities are calculated of the required response quantities at the set of critical points.
Within this loop there is at least one call to runstream MODEL to form a perturbed design,
a call to form a set of new reduced equations, and a call to processor DRX to integrate the
reduced equations in time. Runstream TR DXDV 1 implements the forward difference method
with either fixed or updated basis vectors.

P —mm e e e
$ (TR DXDV 1) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING THE FORWARD DIFFERENCE OPERATOR AND

$ EITHER FIXED OR UPDATED MODES

$ UPDATE HISTORY

$ 6/28/88 WHG - MODIFIED FOR VELD, ACCE, STRESSES

$—-- —— _— - - _— S
=XQT U1

*REGISTER STORE(1 DXDV REGISTERS 1 1)
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+REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)

*RGI
FDCH = .001
FDMCH = .0001
XLIB = &
OPT =0
RLIB = 14
DRMETHOD=0

DXMD=UPDATED
*DCALL,OPT (DXDV PARAMETERS)
*SHOW
«DCALL (TR,DPREP)
$
LOOP OVER ALL DESIGN VARIABLES

1 NDV = TOC,NJ(1 X ADS 1 1)

I NCNT = NDV

t IDV = 1

*«LABEL 10

*XQT U1

| IFLG = DS,1,"IDV",1(1 XFLG ADS 1 1)
*JZ(IFLG, 100)

«LIBS "XLIB" 2 34167 89 10 11 12 13 14 15 16 17 18 19 20
*=XQT DCU

COPY "XLIB" 1 XNAME ADS 1 1

*XQT U3

RP2

$
$
1
|

FORMAT 1’ (1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV ND.,I3)

PRINT(1) "IDV"
*XQT AUS
DEFINE X = "XLIB" X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 11
J=1,"NDV" : 1.0
="IDV" : "FDCH"
TRAN(SOURCE=X, OPERATION=MULT)
$ CHECK FOR TDO SMALL A STEP
' X = DS,1,"IDV",1("XLIB" X ADS 1 1)
! DX = FDCH*X
«IF("DX" GT "FDCHM"): *GOTO 20
! DX = FDMCH
! X = X + FDMCH
TABLE,U : X ADS 1t 1
OPER = XSUM
="IDV" : "X"
*«LABEL 20
*CALL (SENS,DVUP)
$ FORM PERTURBED MODEL
*ONLINE=0
*DCALL (MODEL)
*ONLINE=1
*=XQT DCU
COPY "XLIB" 1 TIME
COPY "XLIB" 1 CA
COPY "XLIB" 1 DMPD
«IF("DXMD" NE FIXE): *GOTO 30
COPY "XLIB" 1 VIBR MODE
*DCALL(TR,DIAG)
*GO0 TO 40
*LABEL 30
«IF("DXMD" NE UPDA): =*GOTO 40
*DCALL (TR, VECTORS)
«LABEL 40
*XQT AUS
DEFINE X = VIBR MODE 1 1 1,"NMODES"
DEFINE F = APPL FORC 1
XTF = XTY(X,F)
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*DCALL(TR,REDM) VLIB=1

*XQT DRX
DTEX(DT="DT",METHUD="DRMETHUD",NTERMS="NTERMS")
TRI(QXLIB=1,QX1L=1,QX2L=1,T2="T2",LB="BLKSIZE")
*DCALL(TR,DBACK 1)

$

$ COMPUTE DERIVATIVES USING FORWARD DIFFERENCE OPERATOR
$

! OVDX = 1.0/DX

! MOVD = - pVDX

' T=1:1!N=NBCK

*LIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20
*LABEL 80

*XQT AUS

' NM = DS,"I",1,1(1 BACK LIST 1 1)

! IERR = TOC,IERR(1 SEL "NM" MASK MASK)
*JNZ(IERR, 90)

DEFINE CP1 = “XLIB" CRPT "NM"

DEFINE CPO = CRPT "NM"

DXDV "NM" "IDV" = SUM("QOVDX" CP1 "MOVD" CPO)
*XQT DCU

PRINT 1 DXDV "NM" "IDV"

*LABEL 90

'I=1+1

*JGZ,-1(N,80)

ERASE "XLIB"

*LABEL 100

! IDV = IDV + 1

*JGZ,-1(NCNT, 10)

$

*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN

*END

Runstreamn TR DXDV 3

Runstream TR DXDV 3 implements the fixed-mode semianalytical sensitivity method. De-
pending on the call to runstream TR DBACK, either the mode displacement or mode acceleration
method is used to recover the physical sensitivities.

B
$ (TR DXDV 3) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ SEMIANALYTICALLY

B
*XQT U1 ’

*REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RGI
FDCH = .001
FDMCH = .0001
XLIB = 5
OPT =0
RLIB = 14
DRMETHOD=0
*DCALL,OPT(DXDV PARAMETERS)
*SHOW
$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$
*DCALL(TR,DPREP)
=XQT U1
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
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! NCNT = NDV
1 IDV =1
«LABEL 10
*LIBS "XLIB" 2 34167 89 10 11 12 13 14 15 16 17 18 19 20
*XQT U1
' IFLG = DS,1,"IDV",1("XLIB" XFLG ADS 1 1)
*JZ(IFLG, 1000
*XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT U3
RP2

FORMAT 1’(1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)

PRINT(1) "IDV"
*XQT AUS

DEFINE X = "XLIB" X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 1 1
J=1,"NDV" : 1.0

J="IDV" : "FDCH"

TRAN (SOURCE=X, OPERATION=MULT)
$ CHECK FOR TOO SMALL A STEP

t X =DS,1,"IDV",1("XLIB” X ADS 1 1)

! DX = FDCH*X
*IF("DX" GT "FDCHM"): *GOTO 20
t DX = FDMCH

t X = X + FDMCH

TABLE,U : X ADS 11

OPER = XSUM

J="IDV" : "X"

*LABEL 20

*CALL (SENS,DVUP)

$ FORM PERTURBED MODEL
*ONLINE=0

*DCALL (MODEL)

*ONLINE=1

«XQT AUS

DEFINE X = "XLIB"” VIBR MODE 1 1 1,"NMODES"
DEFINE KO = "XLIB" K SPAR

DEFINE Ki = K SPAR

DEFINE MO = "XLIB" "MNAME"

DEFINE M1 = "MNAME"

DEFINE DO = "XLIB" DAMP SPAR

DEFINE D1 = DAMP SPAR

DEFINE FO = "XLIB" APPL FORC 1

DEFINE F1 = APPL FORC 1

! IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)

! OVDX = 1.0/DX

! MOVD = -0VDX

DKDV = SUM("OVDX" K1 "MOVD" KO)
DMDV = SUM("OVDX" M1 "MOVD" MO)
DFDV = SUM("0OVDX" F1 "MOVD" FO)
«IF("IDSP" EQ 0): DDDV = SUM("OVDX" D1 "MOVD" DO)
DKX = PROD(DKDV,X)

DMX = PROD(DMDV,X)

*IF("IDSP" EQ 0): DDX = PROD(DDDV,X)
RDKX = XTY(X,DKX)

RDMX = XTY(X,DMX)

*IF("IDSP" EQ 0): RDDX = XTY(X,DDX)
XTF AUS = XTY(X,DFDV)

*XQT DCU

COPY "XLIB" 1 TIME

COPY "XLIB" 1 CA

COPY "XLIB" 1 DT AUS

COPY "XLIB" 1 DTEX AUS

COPY "XLIB" 1 DCON AUS $ CONSTANTS FOR NEWMARK METHOD
$

$ FORM THE RIGHT-HAND-SIDE PSEUDO LOAD VECTOR
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$
*XQT DRX
BACK(LRZ="BLKSIZE" ,PRINT=0)
T=-1.0RDMX : Y = "XLIB" QX2 AUS
*IF("IDSP" EQ 0): T = -1.0 RDDX : Y = "XLIB" QX1 AUS
T=-1.0 RDKX : Y = "XLIB" QX AUS
Z = FH AUS
*XQT DRX
TR1(QXLIB=1,QX1LIB=1,QX2LIB8=1,T2="T2",FHLIB=1,LB="BLKSIZE")

BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL
QUANTITIES

@B P P

*DCALL(TR,DBACK, 4)

*XQTC DCU

ERASE 1

*LABEL 100

! IDV = IDV + 1

*JGZ,-1(NCNT,10)

$

*xLIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20
*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN

«END

Runstream TR DXDV 5

Runstream TR DXDV 5 implements the overall central difference method using either fixed
or updated basis vectors.

O
$ (TR DXDV 5) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ USING TWO POINT CENTRAL DIFFERENCE OPERATOR

$ WITH UPDATED OR FIXED MODES

P m e o e
*XQT U1

*REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RGI
FDCH = .001
FDMCH = .0001
XLIB
YLIB
OPT =
RLIB = 14
DRMETHOD=0
DXMD=UPDATED
*DCALL ,OPT (DXDV PARAMETERS)
*SHOW
$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$
*DCALL (TR, DPREP)
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
! NCNT = NDV
VIDV = 1
+LABEL 10
*XQT U1
¢t IFLG = DS,1,"IDV",1(1 XFLG ADS 1 1)
*JZ(IFLG,100)
*XQT U3
RP2

(]
o oOom
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FORMAT 1’ (1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV NO.,I3)

PRINT(1) "IDV"
«LIBS "XLIB" 234167891011 1213 14 156 16 17 18 19 20
*XQT AUS
1 IS =1
t NST = 2
! SIGN = 1.0
$
$ DO ANALYSIS FOR BOTH POSITIVE AND NEGATIVE STEPS
$
*LABEL 15
*«XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT AUS
DEFINE X = "XLIB” X ADS 11
TABLE(NI=1,NJ="NDV") : X ADS 1 1
TRAN (SOURCE=X)
$ DIFFERENCE APPROPRIATE DESIGN VARIABLE
\ X = DS,1,"IDV",1("XLIB" X ADS 1 1)
t DX = FDCH=*X
*IF("DX" GT "FDCHM"): *GOTO 20
! DX = FDMCH
*«LABEL 20
t X = DX*SIGN + X
TABLE,U : X ADS 1 1
OPER = XSUM
J="1DV" : "X"
*CALL (SENS,DVUP)
$ FORM PERTURBED MODEL
*0ONLINE=0
*DCALL (MODEL)
*0ONLINE=1
*XQT DCU
COPY "XLIB" 1 TIME
COPY "XLIB" 1 CA
CoPY "XLIB" 1 DMPD
*IF("DXMD" NE FIXE): *GOTO 30
COPY "XLIB" 1 VIBR MODE
*DCALL(TR,DIAG)
*G0D TO 40
*«LABEL 30
*IF("DXMD" NE UPDA): *GOTO 40
*DCALL(TR,VECTORS)
*LABEL 40
*«XQT AUS
DEFINE X = VIBR MODE 1 1 1,"NMODES"
DEFINE F = APPL FORC 1
XTF = XTY(X,F)
*DCALL(TR,REDM) VLIB=1
*XQT DRX
DTEX(DT="DT",METHOD=”DRMETHDD",NTERMS="NTERMS")
TR1(QXLIB=1,T2="T2",QXlLIB=1,DX2LIB=1,LB="BLKSIZE")
*DCALL(TR,DBACK 1)
! SIGN = -1.0
«LIBS "YLIB" 2 3415789 10 11 12 13 14 15 16 17 18 19 20
*JGZ,-1(NST,15)
$
COMPUTE DERIVATIVES USING CENTRAL DIFFERENCE OPERATOR

TWDX = 2.0%DX

OovDX 1.0/TWDX

MOVD = - OVDX

1 I=1:"!'N-=NBCK

«LIBS 1234567891011 12 13 14 15 16 17 18 19 20
«LABEL 80

*XQT AUS

$
$
'
!
!
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! NM = DS,"I",1,1(1 BACK LIST 1 1)

! IERR = TOC,IERR(1 SEL "NM" MASK MASK)
*JINZ(IERR,90)

DEFINE CP1 = "XLIB" CRPT "NM"

DEFINE CPO = "YLIB" CRPT "NM"

DXDV "“NM" "IDV" = SUM("OVDX" CP1 "MOVD" CP0)
*«XQT DCU

PRINT 1 DXDV "NM" “IDV"

*LABEL 90

I =T1+1

*JGZ,-1(N,80)

ERASE "XLIB"

ERASE "YLIB"

*LABEL 100

! IDV = IDV + 1

*JGZ,-1(NCNT, 10)

$

*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN

*END

Runstream TR DXDV 6

Runstream TR DXDV 6 implements the semianalytical method with nonzero d®/dr. The
called procedure TR DPHI determines how the basis vector derivatives are calculated.

B
$ (TR DXDV 6) - CALCULATES DERIVATIVES OF TRANSIENT RESPONSE

$ SEMIANALYTICALLY BUT WITH THE EFFECT OF CHANGING
$ MODES INCLUDED
Rt
*XQT U1

*REGISTER STORE(1 DXDV REGISTERS 1 1)
*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RGI
FDCH = .001
FDMCH = .0001
XLIB = 5
OPT =0
RLIB = 14
DRMETHOD=0
*DCALL,OPT(DXDV PARAMETERS)
*SHOW
$
$ INITIALIZATION FOR DERIVATIVE CALCULATIONS
$
*DCALL(TR,DPREP)
*XQT U1
$
$ LOOP OVER ALL DESIGN VARIABLES
$
! NDV = TOC,NJ(1 X ADS 1 1)
! NCNT = NDV
! IDV = 1
*LABEL 10
»LIBS "XLIB" 23416789 10 11 12 13 14 15 16 i7 18 19 20
=XQT U1
! IFLG = DS,1,"IDV",1("XLIB" XFLG ADS 1 1)
*JZ(IFLG, 100)
*XQT DCU
COPY "XLIB" 1 XNAME ADS 1 1
*XQT U3
RP2
FORMAT 1’ (1H1,20X,41HBEGINNING SENSITIVITY CALCULATION. DV ND.,I3)
PRINT(1) "IDV"

[}
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«XQT AUS

DEFINE X = "XLIB” X ADS 1 1
TABLE(NI=1,NJ="NDV") : X ADS 1 1
J=1,"NDV" : 1.0

J="IDV" : "FDCH”

TRAN (SOURCE=X, OPERATION=MULT)

$ CHECK FOR TDO SMALL A STEP

' X = DS,1,"IDV",1(“XLIB" X ADS 1 1)

! DX = FDCH*X
*«IF("DX" GT "FDCHM"): =*GOTO 20
! DX = FDMCH

I X = X + FDMCH
TABLE,U : X ADS 1 1
OPER = XSUM
J="IDV" : "X"

*LABEL 20

*CALL (SENS,DVUP)

' OVDX = 1.0/DX

' MOVD = -OVDX

$ FORM PERTURBED MODEL

*ONLINE=0

*DCALL (MODEL)

$ CALCULATE DERIVATIVES OF MODES SHAPES
*XQT AUS

DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR

DEFINE MO = "XLIB" "MNAME"

DEFINE M1 = “MNAME"

DKDV = SUM("OVDX" K1 "MOVD" KO)

DMDV = SUM("OVDX" M1 "MOVD" MO)

*DCALL(TR,DPHI, 3)

*XQT DCU

COPY "XLIB" 1 DT AUS

COPY "XLIB" 1 DTEX AUS

COPY "XLIB"” 1 DCON AUS $ CONSTANTS FOR NEWMARK METHOD
*XQT AUS

DEFINE X0 = "XLIB" VIBR MODE 1 1 1,"NMODES"

DEFINE KO = "XLIB" K SPAR

DEFINE K1 = K SPAR
DEFINE MO = "XLIB" "MNAME"
DEFINE M1 = "MNAME"
DEFINE DO = "XLIB" DAMP SPAR
DEFINE D1 = DAMP SPAR
DEFINE FO = "XLIB" APPL FORC 1 1
DEFINE F1 = APPL FORC 1 1
DEFINE DXDV = DXDV AUS "IDV"

$

$ CALCULATE DERIVATIVE TERMS INVOLVING THE STIFFNESS MATRIX
$

DKX1 = PROD(DKDV,X0)

DKX2 = PROD(K0,X0)

DKX3 = PROD(KO,DXDV)

XDK1 = XTY(X0,DKX1)

XDK2 = XTY(DXDV,DKX2)

XDK3 = XTY(X0,DKX3)

XTMP = SUM(XDK1,XDK2)

XDKX = SUM(XTMP,XDK3)
$
¢ CALCULATE DERIVATIVE TERMS INVOLVING THE MASS MATRIX
$

DMX1 = PROD(DMDV,X0)

DMX2 = PROD(MO,X0)

DMX3 = PROD(MO,DXDV)

XDM1 = XTY(X0,DMX1)

XDM2 = XTY(DXDV,DMX2)

XDM3 = XTY(XO,DMX3)



XTMP = SUM(XDM1,XDM2)

XDMX = SUM(XTMP,XDM3)

$

$ CALCULATE DERIVATIVE TERMS INVOLVING THE DAMPING MATRIX
$

! IDSP = TOC,IERR(1 DAMP SPAR MASK MASK)
*IF("IDSP" NE 0): *GOTO 30

DDDV = SUM("OVDX" D1 "MOVD" DO)

DDXt = PROD(DDDV,X0)

DDX2 = PROD(DO,X0)

DDX3 = PROD(DO,DXDV)

XDD1 = XTY(X0,DDX1)

XbD2 = XTY(DXDV,DDX2)

XDD3 = XTY(X0,DDX3)

XTMP = SUM(XDD1,XDD2)

XDDX = SUM(XTMP,XDD3)

*«LABEL 30
$

$ CALCULATE DERIVATIVE TERMS INVOLVING THE FORCE VECTOR
$

DFDV = SUM("OVDX" F1 "MDVD" FO)

XF1 = XTY(DXDV, FO)

XF2 = XTY(X0, DFDV)

XTF AUS = SUM(XF1, XF2)

*XQT DCU

PRINT 1 XTF AUS

COPY "XLIB" 1 TIME AUS

COPY "XLIB"” 1 CA AUS
$
$ FORM THE RIGHT-HAND-SIDE PSEUDO LOAD VECTOR
$

*XQT DRX

BACK (LRZ="BLKSIZE" ,PRINT=0)

T =-1.0 XDMX : Y = "XLIB" QX2 AUS
*IF("IDSP" EQ 0): T = -1.0 XDDX : Y = "XLIB" QX1 AUS
T=-1.0 XDKX : Y = "XLIB" QX AUS

Z = FH AUS
*XQT DRX
TR1(QXLIB=1,QXILIB=1,QX2LIB=1,T2="T2",FHLIB=1,LB-"BLKSIZE")
*XQT DCU

TOC 1

BACK TRANSFORM FOR NECESSARY SENSITIVITIES OF PHYSICAL
QUANTITIES

® B BB

*DCALL(TR,DBACK, 3)

*XQTC DCU

ERASE 1

*LABEL 100

! IDV = IDV + 1

*JGZ,-1(NCNT, 10)

$

*LIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20
*ONLINE=1

*XQT U1

*REGISTER RETRIEVE(1 DXDV REGISTERS 1 1)
*RETURN

*«END

Runstream TR DPREP

TR DPREP is a utility runstream used by all the sensitivity calculation runstreams. Its main
task is to locate the critical points for all required response quantities.

(]
»
$ (TR,DPREP) - PREPARATION FOR SENSITIVITY CALCULATIONS
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¢ FORM CRITICAL POINT TABLES FDR RESPONSE QUANTITIES
$
! NBCK = TOC,NI("QLIB" BACK LIST 1 1)
1t I=1:"'N=NBCK
«LABEL 10
' NM = DS,"I",1,1("QLIB" BACK LIST 1 1)
¢t IERR = TOC,IERR("QLIB" SEL "NM" MASK MASK)
*INZ(IERR,20)
«XQT U10
CRIT(Y="QLIB" HIST "NM",DT="DT", NCRIT="NCRIT", &
CRPT="QLIB" CRPT "NM",CRTI="QLIB" CRTI "NM", &
PCH=.25)
*XQT DCU
PRINT "QLIB" CRTI "NM"
PRINT "QLIB" CRPT "NM"
*LABEL 20
1'I1=1+1
*JGZ,-1(N,10)
«XQT U1
=(E4 PARAMETERS) EOFX
$RESET NFCT="NMODES", NLIM='"NMODES"
RESET NIF="NMODES"
IFSOURCE= “XLIB" VIBR MODE 1 1
*EOFX
*END

Runstream TR DBACK 1

TR DBACK n runstreams implement the different procedures for recovering the physical
sensitivities. They all rely heavily on runstreamm TR CRPT which recovers a specific physical
quantity at the critical points. Runstream TR DBACK 1 recovers the sensitivities with the mode
displacement method and is used in the overall finite difference procedures.

= mmmmmmm m o m oo Do s m oo oo o=
$ (TR DBACK 1) - BACK TRANSFORMATION FOR DERIVATIVES USING MODE

$ DISPLACEMENT METHOD
Y ity
' IIB =1 : ! NNB = NBCK

*LABEL 10

«XQT AUS

DEFINE X = VIBR MODE 1 1 1,"NMODES"

! NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)

' IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)
*JNZ (IERR, 200)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

TMAT VMOD = SVTRAN(IDJK,X)

*DCALL (TR, CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VMOD CNAME=DISP Q=QX
*GOTD 200

*LABEL 30

$

$ VELOCITIES

$

*IF("NM" NE VELO): *GOTO 50

DEFINE IDJK = "XLIB" SEL VELO

TMAT VVEL = SVTRAN(IDJK,X)

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1
*GOTO 200

*LABEL 50

$
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$ ACCELERATIDNS

$

*IF("NM" NE ACCE): *GOTO 70
DEFINE IDJK = "XLIB" SEL ACCE
TMAT VACC = SVTRAN(IDJK,X)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VACC CNAME=ACCE Q=QXx2
*GOTO 200

*LABEL 70

$

$ REACTIONS

$

*IF("NM" NE REAC): *GOTO 90
*GOTO 200

*LABEL 90
$
$ STRESSES
$

«IF("NM" NE STRE): *GOTO 110
*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = VIBR MODE 1 1 1,"NMODES"
T = TMAT VSTRE
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
*GOTO 200

*«LABEL 110
=LABEL 200

! IIB = IIB + 1
*JGZ,-1(NNB, 10)

! IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()
! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

' Q = FREEQ)

*=END

Runstream TR DBACK 2

Runstream TR DBACK 2 recovers sensitivities in the fixed-mode, mode displacement version
of the semianalytical method.

B e e
$ (TR DBACK 2) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD

$ UPDATE HISTORY

Y

$ 6/22/88 WHG - MODIFIED FOR SEMIANALYTICAL METHOD
$ 6/21/88 WHG - CREATED FROM (TR,DBACK,1) FOR UPDATED MODES

$__ —_——— —_—— e

{ IIB =1 : | NNB = NBCK

*LABEL 10

*XQT AUS

' NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ (IERR, 300)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VMOD CNAME=DISP §=QX
*GOTO 200

*LABEL 30

$

$ VELOCITIES

$

*IF("NM" NE VELD): *GOTO 50

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1i
*GOTO 200
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«LABEL 50
$
$ ACCELERATIONS
$
«IF("NM" NE ACCE): *GOTQ 70
+DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*GOTO 200
«LABEL 70
$
$ REACTIONS
$
*IF ("NM" NE REAC): *GOTO 90
*GOTO 200
*LABEL 90
$
$ STRESSES
$
*IF("NM" NE STRE): *GOTO 110
$ FORM [s] [DQ/DV]
+DCALL (TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
*XQT DCU
CHANGE 1 CRPT STRE 1 1 CRPT STR1 1 1
$ FORM [Ds/DV] {Q]
*XQT ES
RESET OPER=T
IDQ = "XLIB" SEL STRESS
U = "XLIB" VIBR MODES 1 1 1,"NMODES"
T = TMAT VSTRE

*XQT AUS
DEFINE SO = "XLIB" TMAT VSTRESS
DEFINE S1 = TMAT VSTRESS

TMAT DSDV = SUM("OVDX" S1 "MOVD" S0)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DSDV CNAME=STRE Q=QX
*XQT AUS

DEFINE STR1 = CRPT STR1

DEFINE STR2 = CRPT STRE

CRPT STRE = SUM(STR1,STR2)

*GOTO 200
*LABEL 110
*GOTD 300
«LABEL 200
*XQT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV “NM" "IDV" 1

COPY 1 "XLIB" DXDV "NM" "IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" 1
*LABEL 300
! JIB = IIB + 1
*JGZ,-1(NNB,10)

! IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREEQ) : ! LIB2 = FREE()
' LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! Q = FREEQ

*END

Runstream TR DBACK 3

Runstream TR DBACK 3 recovers sensitivities in the semianalytical method with nonzero
d®/dx.

R et
¢ (TR DBACK 3) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD WITH CHANGING MODES

$ UPDATE HISTORY

s ______________

$ 6/22/88 WHG - MODIFIED FOR SEMIANALYTICAL METHOD
$ 6/21/88 WHG - CREATED FROM (TR,DBACK,1) FOR UPDATED MODES



! IIB =1 : ! NNB = NBCK

*LABEL 10

*XQT AUS

DEFINE DX = DXDV AUS "IDV" 1 1,"NMODES"

! NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)

! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)

*JNZ (IERR, 300)

$

$ DISPLACEMENTS

$

*IF("NM" NE DISP): *GOTO 30

DEFINE IDJK = "XLIB" SEL DISP

TMAT DVMX = SVTRAN(IDJK,DX)

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VMOD CNAME=DISP Q=QX
*XQT DCU

CHANGE 1 CRPT DISP 1 1 CRPT DSP1 1 1

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVMX CNAME=DISP Q=QX
*XQT AUS

DEFINE D1 = CRPT DSP1

DEFINE D2 = CRPT DISP

CRPT DISP = SUM(D1,D2)

*GOTO 200

*LABEL 30

$

$ VELOCITIES

$

*«IF("NM" NE VELO): =GOTO 50

DEFINE IDJK = "XLIB" SEL VELO

TMAT DVMX = SVTRAN(IDJK,DX)

*DCALL (TR, CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1
*XQT DCU

CHANGE 1 CRPT VELO 1 1 CRPT VEL1 1 1

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVMX CNAME=VELO Q=QX1

«XQT AUS

DEFINE V1 = CRPT VEL1
DEFINE V2 = CRPT VELOD
CRPT VELD = SUM(V1,V2)
*GOTO 200

*«LABEL 50

$

$ ACCELERATIDNS

$

*IF("NM" NE ACCE): =GOTO 70
DEFINE IDJK = "XLIB" SEL ACCE

TMAT DVMX = SVTRAN(IDJK,DX)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VACC CNAME=ACCE Q=QX2
*XQT DCU

CHANGE 1 CRPT ACCE 1 1 CRPT ACC1 1 1
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVMX CNAME=ACCE Q=0QX2
«XQT AUS

DEFINE A1 = CRPT ACC1

DEFINE A2 = CRPT ACCE

CRPT ACCE = SUM(A1,A2)

*GOTO 200

*LABEL 70

$

$ REACTIONS

$

*IF("NM" NE REAC): *GOTO 90

*GOTO 200

*LABEL 90

$

$ STRESSES

$

*IF("NM" NE STRE): *GOTO 110

$ FORM [S] [DQ/DV]
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+DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=VSTRE CNAME=STRE Q=QX
*XQT DCU

CHANGE 1 CRPT STRE 1 1 CRPT STR1 1 1
$ FORM [DS/DV] (Q]
*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" VIBR MODES 1 1 1,"NMODES”

T = TMAT VSTRE

+XQT AUS

DEFINE SO = "XLIB” TMAT VSTRESS

DEFINE St TMAT VSTRESS

TMAT DSDV = SUM("OVDX" S1 "MOVD" SO)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DSDV CNAME=STRE Q=QX
*XQT DCU

CHANGE 1 CRPT STRE 1 1 CRPT STR2 1 1

$ FORM S [D PHI / DV] [qQ]

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = DXDV AUS "IDV" 1 1,"NMODES"

T = TMAT DSTRE

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DSTRE CNAME=STRE Q=QX
*XQT AUS

DEFINE STR1 = CRPT STR1

DEFINE STR2 = CRPT STR2

DEFINE STR3 = CRPT STRE

TMP = SUM(STR1,STR2)

CRPT STRE = SUM(TMP,STR3)

*GOTO 200

«LABEL 110

*GOTO 300

*LABEL 200

*XQT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV "NM" "IDV" 1
COPY 1 "XLIB" DXDV "NM" "IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" 1

*LABEL 300

! IIB = IIB + 1

*JGZ,-1(NNB,10)

| IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREEQ)
| LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

' Q = FREE()

*END

Runstrearm TR DBACK 4

Runstream TR DBACK 4 recovers sensitivities in the fixed-mode semianalytical method with
the mode acceleration method.

USSR S e
$ (TR DBACK 4) - BACK TRANSFORMATION FOR DERIVATIVES USING

$ SEMIANALYTICAL METHOD

$ WITH THE MODE ACCELERATION METHOD

Gmmm o e
*XQT AUS

DEFINE X = "XLIB" VIBR MODE 1 1 1,"NMODES"

DEFINE E = "XLIB" VIBR EVAL 1 1

DEFINE DKX = DKX AUS

DEFINE DMX = DMX AUS

DEFINE ROMG = "XLIB" ROMG AUS

DEFINE XTDX = "XLIB" XTDX

DEFINE XOMD = "XLIB" XOMD

DEFINE XOME = "XLIB" XOME

*«IF("IDSP" NE 0): TABLE(NI="NMODES",NJ="NMODES") : RDDX
$ CALCULATE VELOCITY TERM
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XOM1 = CBR(XOME,RDKX)

XOMK = CBD(XDM1,ROMG)

! NIDM = TOC,NJ("XLIB" XTDX MASK MASK MASK)

! NBDM = TOC,NINJ("XLIB" XTDX MASK MASK MASK)
*IF("NJDM" NE "NBDM"): XOKC = CBR(XOMK,XTDX)
+IF("NJDM" EQ “"NBDM"): XOKC = CBD(XOMK,XTDX)

XOMC = CBR(XOME,RDDX)

XQD = SUM(XOKC, -1.0 XOMC)
$ CALCULATE ACCELERATION TERM

DKXO = CBD(DKX, ROMG)

APPL FORC 887 = SUM(DKXO, -1.0 DMX)
$ CALCULATE DERIVATIVE OF THE PSEUDOSTATIC TERM
DEFINE USTAT = "XLIB" STAT DISP 1 1

FSL1 = PROD(DKDV,USTAT)

APPL FORC 888 = SUM(DFDV,-1.0 FSL1)

*XQT SSOL

RESET SET=887, KLIB="XLIB", KILIB="XLIB", REAC=0
*XQT SSOL

RESET SET=888, KLIB="XLIB", KILIB="XLIB", REAC=0

$
$ LOOP OVER ALL RESPONSE QUANTITY TYPES
$
!

IIB =1 ! ! NNB = NBCK
«LABEL 10
*XQT AUS
! NM = DS,"IIB",1,1("XLIB" BACK LIST 1 1)
! IERR = TOC,IERR("XLIB" SEL "NM" MASK MASK)
«JNZ(IERR, 300)
$
$ DISPLACEMENTS
$
«IF("NM" NE DISP): =GOTO 30
DEFINE IDJK = "XLIB" SEL DISP
DEFINE DAC1 = STAT DISP 887
DEFINE DUST = STAT DISP 888
DEFINE XTDX = "XLIB" XTDX
DEFINE DACC = "XLIB" TMAT DACC
TMAT DUST = SVTRAN(IDJK,DUST)
TMAT DAC1 = SVTRAN(IDJK,DAC1)
$ VELOCITY TERMS
TMAT DVL1 = SVTRAN(IDJK,XQD)
$

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DUST CNAME=DISP Q=A

TDCC(1 CRPT DISP 1 1) : N2=DSP1

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DVL1

TOCC(1 CRPT DISP 1 1) : N2=DSP2

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=DVEL

TOCC(1 CRPT DISP 1 1) : N2=DSP3

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB" TNAME=DAC1

TOCC(1 CRPT DISP 1 1) : N2=DSP4

*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1 TNAME=DACC

TOCC(1 CRPT DISP 1 1) : N2=DSP§
*XQT U4

vu

DEFINE D1 = CRPT DSP1

DEFINE D2 = CRPT DSP2

DEFINE D3 = CRPT DSP3

DEFINE D4 = CRPT DSP4

DEFINE D5 = CRPT DSP5

CRPT DISP = SUM(D1, D2, -1.0%D3, D4, -1.0#D5)
*GOTO 200

«LABEL 30

$

$ VELOCITIES

$

#«IF("NM" NE VELOD): *GOTO 50

90

CNAME=DISP Q=QX1

CNAME=DISP Q=QX1

CNAME=DISP Q=QX2

CNAME=DISP Q=QX2



*DCALL(TR,CRPT) LIBi="XLIB" LIB2="XLIB" LIB3=1 TNAME=VVEL CNAME=VELO Q=QX1

*GOTO 200

*LABEL 50

$

$ ACCELERATIONS

$

+*IF("NM" NE ACCE): *GOTO 70
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1
*GOTO 200

«LABEL 70

$

$ REACTIONS

$

«IF("NM" NE REAC): *GOTD 90
*GOTO 200

*LABEL 90

$

$ STRESSES

$

«IF("NM" NE STRE): *GOTD 110
$

$ FORM [S] [Du/DV]

$

TNAME=VACC CNAME=ACCE Q=QX2

«LIBS 1 23456789 10 11 12 13 14 15 16 17 18 19 20

*XQT ES
RESET OPER=T
IDQ = SEL STRESS
U="XLIB" STAT DISP 888 : T = "XLIB" TMAT DTM1
="XLIB" XQD AUS : T = "XLIB" TMAT DTM2
="XLIB" STAT DISP 887 : T = "XLIB" TMAT DTM4
«LIBS "XLIB” 23416789 10 11 12 13 14 15
*XQT AUS
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1 1) : N2=5TR1
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1t 1) : N2=STR2
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1
TOCC(1 CRPT STRE 1 1) : N2=STR3
«DCALL (TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE 1 1) : N2=STR4
*DCALL(TR,CRPT) LIB1="XLIB" LIB2="XLIB" LIB3=1
TOCC(1 CRPT STRE 1 1) : N2=STRS

$
$ FORM [DS/DV] (U]

$

*XQT ES

RESET OPER=T

IDQ = "XLIB" SEL STRESS

U = "XLIB" STAT DISP 1 1 : T = TMAT SF
U = "XLIB" XOMD AUS T = TMAT SD
U = "XLIB" XOME AUS : T = TMAT 3P
=XQT AUS

DEFINE SO = "XLIB" TMAT SF : DEFINE S1 = TMAT

TMAT DSF = SUM("OVDX" S1 "MOVD" S0)
DEFINE SC = "XLIB" TMAT SD : DEFINE Si
TMAT DSD = SUM("OVDX" S1 "MOVD" S0)
DEFINE SO = "XLIB" TMAT SP : DEFINE Si1
TMAT DSP = SUM("OVDX" S1 "MOVD" S0)
*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE) : N2=STR6

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE) : N2=STR7

*DCALL(TR,CRPT) LIB1="XLIB" LIB2=1 LIB3="XLIB"
TOCC(1 CRPT STRE) : N2=STR8

*XQT U4

vu

16 17 18 19 20

TNAME=DTM1 CNAME=STRE Q=A

TNAME=DTM2 CNAME=STRE Q=QX1

TNAME=SD CNAME=STRE Q=QX1

TNAME=DTM4 CNAME=STRE Q=QX2

TNAME=SP CNAME=STRE Q=QX2

SF

TMAT SD

TMAT SP

TNAME=DSF CNAME=STRE Q=A

TNAME=DSD CNAME=STRE Q=QX1

TNAME=DSP CNAME=STRE Q=QX2



DEFINE S1 = CRPT STR1
DEFINE S2 = CRPT STR2

DEFINE S3 = CRPT STR3

DEFINE S4 = CRPT STR4

DEFINE S5 = CRPT STRS

DEFINE S6 = CRPT STR6

DEFINE 57 = CRPT STRY

DEFINE S8 = CRPT STR8

CRPT STRE = SUM(S1, S2, -1.0%S3, S4, -1.0%S5, S6, -1.0%S7, -1.0%S8)
*GOTO 200

#LABEL 110

*GOTO 300

*LABEL 200

*XQT DCU

CHANGE 1 CRPT "NM" 1 1 DXDV "NM" "IDV" 1

COPY 1 "XLIB" DXDV "NM" "IDV" 1

PRINT "XLIB" DXDV "NM" "IDV" 1

*LABEL 300

| IIB = IIB + 1

*JGZ,-1(NNB, 10)

! IIB = FREE() : ! NNB = FREE() : ! LIB1 = FREE() : ! LIB2 = FREE()
! LIB3 = FREE() : ! TNAME = FREE() : ! CNAME = FREE()

! Q@ = FREEQ)

*END

Runstream TR DPHI 3

Runstream TR DPHI 3 implements the modified modal method for calculating eigenvector
derivatives and is called from sensitivity calculation runstream TR DXDV 6.

;e e
$ (TR,DPHI,3) - CALCULATE EIGENVECTOR DERIVATIVES USING THE

$ MODIFIED MODAL METHOD
gy
*XQT AUS

INLIB=10 : OUTLIB=10

DEFINE MO = “"XLIB" "MNAME"

DEFINE DK = 1 DKDV SPAR

DEFINE DM = 1 DMDV SPAR

DEFINE X0 = "XLIB" VIBR MODE 1 1 1,"NMODES"

DEFINE AJK = AJK

DEFINE EV = "XLIB" VIBR EVAL 1 1

MX = PRDD(DM,X0)

AKK = XTYD(-.5 XO0,MX)
TABLE(NI="NMODES",NJ="NMODES") : AJK
TABLE{NI=1,NJ="NMODES") : UNIT : J=1,"NMODES" : 1.0
' J=1: 1t NJ = NMODES
*LABEL 10

! EJ = DS,"J",1,1("XLIB" VIBR EVAL 1 1)

! MEJ = -EJ

DEFINE XJ = "XLIB" VIBR MODE 1 1 "J","J"

DKDM = SUM(DK,"MEJ" DM)

MX = PROD(DKDM,XJ)

DLAM = XTY(XJ,MX)

' DLAM = DS,1,1,1(10 DLAM AUS 1 1)

AF1 = PROD("DLAM" MO, XI)

AF2 = SUM(AF1 -1.0 MX)

«IF("J" EQ 1): 11 APPL FORC = UNIDN(AF2)

«IF("J" NE 1): t1 APPL FORC = UNION,U(AF2)

AA = XTY(XO0,MX)

DEN1 = SUM(-1.0 EV, "EJ" UNIT)

DEN2 = PROD(EV,DEN1)
TABLE,U : DEN2 : I="]J" : J
FACT = RECIP(DEN2)

AAB = PROD("EJ" FACT,AA)
DE1 : OPER=XSUM : DEST,U=AJK AUS

1 :1.0
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SOURCE=AAB : JS=1 : JD="J" : EX1
SDURCE=AKK : IS="J" : JS=1 : ID="J" : JD="J" : EX1
1J=J+1
*JGZ,-1(NJ,10)
DXDV = CBR(XO,AJK)
*XQT SSOL
RESET KLIB="XLIB", KILIB="XLIB", QLIB=11, REAC=0, EP=0
*XQT AUS
DEFINE D1 = 10 DXDV AUS
DEFINE D2 = 11 STAT DISP
DXDV AUS "IDV" = SUM(D1,D2)
*DELETE 10
*DELETE 11
*RETURN
*END

Runstream TR CRPT

TR CRPT is a utility runstream which performs the transformation from modal to physical
basis for a single response quantity at a set of critical times. It is heavily used by the TR DBACK
runstreams.

s __________________________________________________________________
$ (TR,CRPT) - FORM CRITICAL POINT RESPONSE TABLE

s __________________________________________________________________
*ONLINE=0

*XQT AUS

# NCRIT = TOC,NI("LIB1" CRTI "CNAME" 1 1) $ NUMBER OF TIMES

! ND = TOC,NI("LIB2" TMAT "TNAME" 1 1) $ NUMBER OF RESP. QUANTITIES
1 NQ = TOC,NJ("LIB2" TMAT "TNAME" 1 1) $ NUMBER OF MODES

! NJQ = TOC,NJ("LIB3" "Q" AUS MASK MASK)

! ISTP = 0

$ LOOP OVER ALL RESPONSE QUANTITIES

' =1

' N = 8D

INLIB = 21 : OUTLIB = 21

*LABEL 20

DE1

SOURCE="LIB2" TMAT "TNAME"

ID =1 : IS="I"

DEST=TONE "TNAME" "I" 1

EX1

TABLE(NI="NQ", NJ="NCRIT") : XBAR CRIT "I”
$ LOOP OVER NUMBER OF CRITICAL POINTS

VI =1

! NN = NCRIT
*LABEL 40

DE1

t TIME = DS,"II",1,"I"("LIB1" CRTI "CNAME" 1 1)
! ISTP = TIME/DT + .5

! ISTP = ISTP + 1

! IB = ISTP/NJQ

! IST = IB*NJQ
+IF("IST" NE "ISTP"): ! IB = IB + 1
t J=1IB-1+NJ§:!J=1ISTP -]

SOURCE = "LIB3" "Q" AUS MASK MASK "IB" : JS="J" . DEST,U=XBAR CRIT "I"
JD = "II" : EX1

VI =11+ 1

*JGZ,-1(NN,40)

DEFINE T = TONE "TNAME" "I"

DEFINE XBAR = XBAR CRIT "I"

CI AUS "I" = RPROD(T,XBAR)

TOCC(CI AUS "I") : NJ=1

DEFINE CI = CI AUS "I"

«IF("I" EQ 1): 1 CRPT "CNAME" = UNION(CI)
*IF("I" GT 1): 1 CRPT "CNAME" = UNION,U(CI)
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'I=1+1
*JGZ,-1(N,20)

*ONLINE=1

! NCRIT = FREE() : ! ND = FREE() : ! NG = FREE() ! NJQ = FREE()
! ISTP = FREE() : ! IB = FREE() : ! IST = FREEQ)

*END

Runstrearn TR DIAG

TR DIAG is a utility runstream that solves the reduced-order eigenproblem based on a given
set of basis vectors to uncouple a reduced system.

* XQT AUS
OUTLIB=10: INLIB=10
DEFINE K=1 K: DEFI M=1 "MNAME"
DEFINE X = "VLIB" VIBR MODE
1JCODE=10000
KX=PROD(X,X): SYN K 10000 "NMODE"
MX=PROD(M,X): SYN M 10000 "NMODE"
! ZERO=NMODE-1
* JZ (ZER0O,1003)
* XQT STRP
RESET SDURCE=10, DEST=10
= JGZ (ZERO,1004)
* LABEL 1003
* XQT AUS
QUTLIB=10: INLIB=10
1K=DS 2 1 1(10 SYN K MASK MASK)
IM=DS 2 1 1(10 SYN M MASK MASK)
'EVAL=K/M
TABLE(NI=1,NJ=1): SYS EVEC: J=1: 1.0
TABLE(NI=1,NJ=1): SYS EVAL: J=1: "EVAL"
« LABEL 1004
* XQT AUS
OUTLIB=10: INLIB=10
DEFINE E=SYS EVEC
DEFI X = "VLIB" VIBR MODE
X ORTH 1 1=CBR(X,E)
DEFINE X=X ORTH 1 1
“VLIB" VIBR MODE 1 1=UNION(X)
DEFINE E=SYS EVAL
"YLIB" VIBR EVAL 1 1=UNION(E)

XTYS(X,KX)
XTYS(X,MX)

*END
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